Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3}\left( {{y^2} + 3y + 3} \right) = 3{y^2}\\{y^3}\left( {{z^2} + 3z + 3} \right) = 3{z^2}\\{z^3}\left( {{x^2} + 3x + 3} \right) = 3{x^2}\end{array} \right.\)
Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3}\left( {{y^2} + 3y + 3} \right) = 3{y^2}\\{y^3}\left( {{z^2} + 3z + 3} \right) = 3{z^2}\\{z^3}\left( {{x^2} + 3x + 3} \right) = 3{x^2}\end{array} \right.\)
Quảng cáo
Trả lời:
Lời giải:
Nếu 1 trong 3 số x, y, z có một số bằng 0 thì x = y = z = 0
Nếu xyz khác 0. Ta chia lần lượt các phương trình cho x3y2, y3z2, z3x2
Ta được hệ: \(\left\{ \begin{array}{l}3{\left( {\frac{1}{x}} \right)^2} = 3{\left( {\frac{1}{y}} \right)^2} + \frac{3}{y} + 1\\3{\left( {\frac{1}{y}} \right)^2} = 3{\left( {\frac{1}{z}} \right)^2} + \frac{3}{z} + 1\\3{\left( {\frac{1}{z}} \right)^2} = 3{\left( {\frac{1}{x}} \right)^2} + \frac{3}{x} + 1\end{array} \right.\)
Đặt \(u = \frac{1}{x};v = \frac{1}{y};t = \frac{1}{z}\)
Suy ra: \(\left\{ \begin{array}{l}3{u^3} = 3{v^2} + 3v + 1\left( 1 \right)\\3{v^3} = 3{t^2} + 3t + 1\left( 2 \right)\\3{t^3} = 3{u^2} + 3u + 1\left( 3 \right)\end{array} \right.\)
Từ (1), (2), (3) ta có: u, v, t > 0
Giả sử u ≥ v ≥ t > 0
Vì 3u3 ≥ 3t3 mà 3u2 + 3u + 1 ≥ 3v2 + 3v + 1
Hay 3t3 ≥ 3u3
Suy ra: t = u
Mà u ≥ v ≥ t nên u = v = t hay x = y = z
Thay vào ta được:
3u3 = 3u2 + 3u + 1
⇔ \(u = \frac{1}{{\sqrt[3]{4} - 1}} \Rightarrow x = \sqrt[3]{4} - 1\)
Vậy \(\left[ \begin{array}{l}x = y = z = 0\\x = y = z = \sqrt[3]{4} - 1\end{array} \right.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)
Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:
2(xy + 3x – y) – 4x + 2y = 0
2xy + 2x = 0
2x(y + 1) = 0
Suy ra: x = 0 hoặc y = -1
+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 ⇔ \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)
+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 ⇔ \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)
Lời giải
Lời giải:
ĐKXĐ: \(x \ge \frac{1}{2}\)
\({x^2} - 6x + 2 = 2\left( {2 - x} \right)\sqrt {2x - 1} \)
⇔ \({x^2} + 2x\sqrt {2x - 1} + 2x - 1 = 4\left( {2x - 1} \right) + 4\sqrt {2x - 1} + 1\)
⇔ \({\left( {x + \sqrt {2x - 1} } \right)^2} = {\left( {2\sqrt {2x - 1} + 1} \right)^2}\) (*)
Do \(x \ge \frac{1}{2}\) nên \(\left\{ \begin{array}{l}x + \sqrt {2x - 1} > 0\\2\sqrt {2x - 1} + 1 > 0\end{array} \right.\)
Nên (*) tương đương: \(x + \sqrt {2x - 1} = 2\sqrt {2x - 1} + 1\)
⇔ \(x - 1 = \sqrt {2x - 1} \)
⇔ \(\left\{ \begin{array}{l}x > 1\\{\left( {x - 1} \right)^2} = 2x - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}x > 1\\x = 2 + \sqrt 2 \end{array} \right.\)
Vậy \(x = 2 + \sqrt 2 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.