Câu hỏi:

19/08/2025 119 Lưu

Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3}\left( {{y^2} + 3y + 3} \right) = 3{y^2}\\{y^3}\left( {{z^2} + 3z + 3} \right) = 3{z^2}\\{z^3}\left( {{x^2} + 3x + 3} \right) = 3{x^2}\end{array} \right.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Nếu 1 trong 3 số x, y, z có một số bằng 0 thì x = y = z = 0

Nếu xyz khác 0. Ta chia lần lượt các phương trình cho x3y2, y3z2, z3x2

Ta được hệ: \(\left\{ \begin{array}{l}3{\left( {\frac{1}{x}} \right)^2} = 3{\left( {\frac{1}{y}} \right)^2} + \frac{3}{y} + 1\\3{\left( {\frac{1}{y}} \right)^2} = 3{\left( {\frac{1}{z}} \right)^2} + \frac{3}{z} + 1\\3{\left( {\frac{1}{z}} \right)^2} = 3{\left( {\frac{1}{x}} \right)^2} + \frac{3}{x} + 1\end{array} \right.\)

Đặt \(u = \frac{1}{x};v = \frac{1}{y};t = \frac{1}{z}\)

Suy ra: \(\left\{ \begin{array}{l}3{u^3} = 3{v^2} + 3v + 1\left( 1 \right)\\3{v^3} = 3{t^2} + 3t + 1\left( 2 \right)\\3{t^3} = 3{u^2} + 3u + 1\left( 3 \right)\end{array} \right.\)

Từ (1), (2), (3) ta có: u, v, t > 0

Giả sử u ≥ v ≥ t > 0

Vì 3u3 ≥ 3t3 mà 3u2 + 3u + 1 ≥ 3v2 + 3v + 1

Hay 3t3 ≥ 3u3

Suy ra: t = u

Mà u ≥ v ≥ t nên u = v = t hay x = y = z

Thay vào ta được:

3u3 = 3u2 + 3u + 1

\(u = \frac{1}{{\sqrt[3]{4} - 1}} \Rightarrow x = \sqrt[3]{4} - 1\)

Vậy \(\left[ \begin{array}{l}x = y = z = 0\\x = y = z = \sqrt[3]{4} - 1\end{array} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)

 Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:

2(xy + 3x – y) – 4x + 2y = 0

2xy + 2x = 0

2x(y + 1) = 0

Suy ra: x = 0 hoặc y = -1

+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)

+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)

Lời giải

Lời giải:

ĐKXĐ: \(x \ge \frac{1}{2}\)

\({x^2} - 6x + 2 = 2\left( {2 - x} \right)\sqrt {2x - 1} \)

\({x^2} + 2x\sqrt {2x - 1} + 2x - 1 = 4\left( {2x - 1} \right) + 4\sqrt {2x - 1} + 1\)

\({\left( {x + \sqrt {2x - 1} } \right)^2} = {\left( {2\sqrt {2x - 1} + 1} \right)^2}\) (*)

Do \(x \ge \frac{1}{2}\) nên \(\left\{ \begin{array}{l}x + \sqrt {2x - 1} > 0\\2\sqrt {2x - 1} + 1 > 0\end{array} \right.\)

Nên (*) tương đương: \(x + \sqrt {2x - 1} = 2\sqrt {2x - 1} + 1\)

\(x - 1 = \sqrt {2x - 1} \)

\(\left\{ \begin{array}{l}x > 1\\{\left( {x - 1} \right)^2} = 2x - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}x > 1\\x = 2 + \sqrt 2 \end{array} \right.\)

Vậy \(x = 2 + \sqrt 2 \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP