Câu hỏi:

19/08/2025 75 Lưu

Cho phân số \[\frac{9}{{34}}.\] Hãy tìm số tự nhiên m sao cho khi đem cả tử số và mẫu số của phân số đã có trừ đi số m ta được phân số mới. Rút gọn phân số mới ta được phân số \[\frac{1}{6}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Hiệu của tử và mẫu là: 

         34 ‒ 9 = 25

Khi bớt ở cả tử và mẫu cùng 1 số m thì hiệu của chúng ko thay đổi.

Tỉ số của tử và mẫu sau khi bớt m là \[\frac{1}{6}\].

Tử số sau khi bớt m là: 

       25 : (6 ‒ 1) = 5.

Số m để bớt cả tử và mẫu để rút gọn bằng \[\frac{1}{6}\] là: 95 = 4.

Vậy số tự nhiên m = 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Chứng minh rằng đường tròn tâm O đường kính BC đi qua K và H. (ảnh 1) 

a) Vì ΔBHC vuông tại H nên H nằm trên đường tròn đường kính BC

Do đó H nằm trên (O) đường kính BC.

Vì ΔBKC vuông tại K nên K nằm trên đường tròn đường kính BC

Do đó K nằm trên (O) đường kính BC.

b) Xét ΔKBC vuông tại K và ΔHCB vuông tại H có:

BC là cạnh chung

\[\widehat {KBC} = \widehat {HCB}\] (ΔABC cân tại A)

Do đó: ΔKBC = ΔHCB (cạnh huyền – góc nhọn)

Xét (O) có:

\[\widehat {KCB}\] là góc nội tiếp chắn cung BK

\[\widehat {HBC}\] là góc nội tiếp chắn cung HC

\[\widehat {KCB} = \widehat {HBC}\] nên 

 c) Xét ∆ABH vuông tại H, ta có: \[\widehat {ABH} + \widehat {BAH} = 90^\circ \]

Suy ra \[\widehat {ABH} = 90^\circ - \widehat {BAH} = 90^\circ - 40^\circ = 50^\circ .\]

Lại có \(\widehat {KBH}\) là góc nội tiếp chắn cung KH của đường tròn (O)

Lời giải

Lời giải:

Đáp án đúng là: D

Có 6 tập con gồm 2 phần tử của A là:

{0; 3}; {0; 4}; {0; 6}; {3; 4}; {3; 6}; {4; 6}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP