Cho phân số \[\frac{9}{{34}}.\] Hãy tìm số tự nhiên m sao cho khi đem cả tử số và mẫu số của phân số đã có trừ đi số m ta được phân số mới. Rút gọn phân số mới ta được phân số \[\frac{1}{6}.\]
Cho phân số \[\frac{9}{{34}}.\] Hãy tìm số tự nhiên m sao cho khi đem cả tử số và mẫu số của phân số đã có trừ đi số m ta được phân số mới. Rút gọn phân số mới ta được phân số \[\frac{1}{6}.\]
Quảng cáo
Trả lời:
Lời giải:
Hiệu của tử và mẫu là:
34 ‒ 9 = 25
Khi bớt ở cả tử và mẫu cùng 1 số m thì hiệu của chúng ko thay đổi.
Tỉ số của tử và mẫu sau khi bớt m là \[\frac{1}{6}\].
Tử số sau khi bớt m là:
25 : (6 ‒ 1) = 5.
Số m để bớt cả tử và mẫu để rút gọn bằng \[\frac{1}{6}\] là: 9 ‒ 5 = 4.
Vậy số tự nhiên m = 4.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
ABCD là hình vuông nên OA = OC
Suy ra d(A, (SBD)) = d(C, (SBD))
Kẻ AH ⊥ SO
BD ⊥ AO, BD ⊥ SA nên BD ⊥ (SAO).
Suy ra BD ⊥ AH.
AH ⊥ (SBD) nên d(A,(SBD)) = AH
Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]
SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]
Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]
Lời giải
Lời giải:
Đáp án đúng là: A
Thay x = 4 vào hàm số y = 2x ‒ 5, ta được: y = 2 . 4 ‒ 5 = 3.
Do đó điểm (4; 3) thuộc đồ thị hàm số y = 2x – 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.