Câu hỏi:

19/08/2025 162 Lưu

Tìm m để phương trình có 2 nghiệm phân biệt: \[\sqrt {{x^2} + mx + 2} = 2x + 1.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Cách 1: Xét phương trình: \[\sqrt {{x^2} + mx + 2} = 2x + 1\]

Với \[x \ge - \frac{1}{2}\], ta có:

x2 + mx + 2 = (2x + 1)2

x2 + mx + 2 = 4x2 + 4x + 1

3x2 + (4 – m)x – 1 = 0

Phương trình trên có ∆ = (4 – m)2 – 4.3.(– 1) = (4 – m)2 + 12 > 0 với mọi m.

Như vậy, phương trình trên có hai nghiệm phân biệt x1, x2 với mọi m.

Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{m - 4}}{3}\\{x_1}{x_2} = - \frac{1}{3}\end{array} \right.\)

Để phương trình đã cho có hai nghiệm phân biệt thì \[{x_1} \ge - \frac{1}{2},\,\,{x_2} \ge - \frac{1}{2}\]

Suy ra \[{x_1} + \frac{1}{2} \ge 0,\,\,{x_2} + \frac{1}{2} \ge 0\]

Do đó \[\left\{ \begin{array}{l}\left( {{x_1} + \frac{1}{2}} \right) + \left( {{x_2} + \frac{1}{2}} \right) \ge 0\\\left( {{x_1} + \frac{1}{2}} \right)\left( {{x_2} + \frac{1}{2}} \right) \ge 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}{x_1} + {x_2} \ge - \frac{1}{4}\\{x_1}{x_2} + \frac{1}{2}\left( {{x_1} + {x_2}} \right) + \frac{1}{4} \ge 0\end{array} \right.\]

Nên \[\left\{ \begin{array}{l}\frac{{m - 4}}{3} \ge - \frac{1}{4}\\ - \frac{1}{3} + \frac{1}{2} \cdot \frac{{m - 4}}{3} + \frac{1}{4} \ge 0\end{array} \right.\] suy ra \[\left\{ \begin{array}{l}m \ge \frac{{13}}{4}\\m \ge \frac{9}{2}\end{array} \right.\] do đó \[m \ge \frac{9}{2}\].

Vậy \[m \ge \frac{9}{2}\] thỏa mãn yêu cầu đề bài.

Cách 2: Để phương trình đã cho có hai nghiệm phân biệt thì

2x + 1 ≥ 0 và x2 + mx + 2 = (2x + 1)2

\[x \ge - \frac{1}{2}\] và mx = 3x2 + 4x ‒1 (*)

Xét phương trình (*)

Với x = 0, suy ra 0x = ‒1 (vô nghiệm)

Với x ≠ 0 suy ra \[3x + 4 - \frac{1}{x} = m\]

Xét hàm số \[f\left( x \right) = 3x + 4 - \frac{1}{x}\] trên tập \[\left[ { - \frac{1}{2}; + \infty } \right) \setminus \left\{ 0 \right\}\]

\[f'\left( x \right) = 3 + \frac{1}{{{x^2}}} > 0\] với mọi x \[\left[ { - \frac{1}{2}; + \infty } \right) \setminus \left\{ 0 \right\}\]

Giới hạn:

\[\mathop {\lim }\limits_{x \to {0^ \pm }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ \pm }} \left( {3x + 4 - \frac{1}{x}} \right) = \mp \infty ;\]

\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {3x + 4 - \frac{1}{x}} \right) = + \infty \]

Bảng biến thiên:

Tìm m để phương trình có 2 nghiệm phân biệt: (ảnh 1)

Số nghiệm của phương trình (1) bằng số giao điểm của đồ thị hàm số \[f\left( x \right) = 3x + 4 - \frac{1}{x}\] và đường thẳng y = m trên miền \[\left[ { - \frac{1}{2}; + \infty } \right)\] {0}

Dựa vào bảng biến thiên ta được giá trị của m thỏa mãn yêu cầu bài toán là \[m \ge \frac{9}{2}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Chứng minh rằng đường tròn tâm O đường kính BC đi qua K và H. (ảnh 1) 

a) Vì ΔBHC vuông tại H nên H nằm trên đường tròn đường kính BC

Do đó H nằm trên (O) đường kính BC.

Vì ΔBKC vuông tại K nên K nằm trên đường tròn đường kính BC

Do đó K nằm trên (O) đường kính BC.

b) Xét ΔKBC vuông tại K và ΔHCB vuông tại H có:

BC là cạnh chung

\[\widehat {KBC} = \widehat {HCB}\] (ΔABC cân tại A)

Do đó: ΔKBC = ΔHCB (cạnh huyền – góc nhọn)

Xét (O) có:

\[\widehat {KCB}\] là góc nội tiếp chắn cung BK

\[\widehat {HBC}\] là góc nội tiếp chắn cung HC

\[\widehat {KCB} = \widehat {HBC}\] nên 

 c) Xét ∆ABH vuông tại H, ta có: \[\widehat {ABH} + \widehat {BAH} = 90^\circ \]

Suy ra \[\widehat {ABH} = 90^\circ - \widehat {BAH} = 90^\circ - 40^\circ = 50^\circ .\]

Lại có \(\widehat {KBH}\) là góc nội tiếp chắn cung KH của đường tròn (O)

Lời giải

Lời giải:

Đáp án đúng là: D

Có 6 tập con gồm 2 phần tử của A là:

{0; 3}; {0; 4}; {0; 6}; {3; 4}; {3; 6}; {4; 6}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP