Quảng cáo
Trả lời:
Lời giải:
Cách 1: Xét phương trình: \[\sqrt {{x^2} + mx + 2} = 2x + 1\]
Với \[x \ge - \frac{1}{2}\], ta có:
x2 + mx + 2 = (2x + 1)2
x2 + mx + 2 = 4x2 + 4x + 1
3x2 + (4 – m)x – 1 = 0
Phương trình trên có ∆ = (4 – m)2 – 4.3.(– 1) = (4 – m)2 + 12 > 0 với mọi m.
Như vậy, phương trình trên có hai nghiệm phân biệt x1, x2 với mọi m.
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{m - 4}}{3}\\{x_1}{x_2} = - \frac{1}{3}\end{array} \right.\)
Để phương trình đã cho có hai nghiệm phân biệt thì \[{x_1} \ge - \frac{1}{2},\,\,{x_2} \ge - \frac{1}{2}\]
Suy ra \[{x_1} + \frac{1}{2} \ge 0,\,\,{x_2} + \frac{1}{2} \ge 0\]
Do đó \[\left\{ \begin{array}{l}\left( {{x_1} + \frac{1}{2}} \right) + \left( {{x_2} + \frac{1}{2}} \right) \ge 0\\\left( {{x_1} + \frac{1}{2}} \right)\left( {{x_2} + \frac{1}{2}} \right) \ge 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}{x_1} + {x_2} \ge - \frac{1}{4}\\{x_1}{x_2} + \frac{1}{2}\left( {{x_1} + {x_2}} \right) + \frac{1}{4} \ge 0\end{array} \right.\]
Nên \[\left\{ \begin{array}{l}\frac{{m - 4}}{3} \ge - \frac{1}{4}\\ - \frac{1}{3} + \frac{1}{2} \cdot \frac{{m - 4}}{3} + \frac{1}{4} \ge 0\end{array} \right.\] suy ra \[\left\{ \begin{array}{l}m \ge \frac{{13}}{4}\\m \ge \frac{9}{2}\end{array} \right.\] do đó \[m \ge \frac{9}{2}\].
Vậy \[m \ge \frac{9}{2}\] thỏa mãn yêu cầu đề bài.
Cách 2: Để phương trình đã cho có hai nghiệm phân biệt thì
2x + 1 ≥ 0 và x2 + mx + 2 = (2x + 1)2
\[x \ge - \frac{1}{2}\] và mx = 3x2 + 4x ‒1 (*)
Xét phương trình (*)
Với x = 0, suy ra 0x = ‒1 (vô nghiệm)
Với x ≠ 0 suy ra \[3x + 4 - \frac{1}{x} = m\]
Xét hàm số \[f\left( x \right) = 3x + 4 - \frac{1}{x}\] trên tập \[\left[ { - \frac{1}{2}; + \infty } \right) \setminus \left\{ 0 \right\}\]
\[f'\left( x \right) = 3 + \frac{1}{{{x^2}}} > 0\] với mọi x ∈ \[\left[ { - \frac{1}{2}; + \infty } \right) \setminus \left\{ 0 \right\}\]
Giới hạn:
\[\mathop {\lim }\limits_{x \to {0^ \pm }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ \pm }} \left( {3x + 4 - \frac{1}{x}} \right) = \mp \infty ;\]
\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {3x + 4 - \frac{1}{x}} \right) = + \infty \]
Bảng biến thiên:

Số nghiệm của phương trình (1) bằng số giao điểm của đồ thị hàm số \[f\left( x \right) = 3x + 4 - \frac{1}{x}\] và đường thẳng y = m trên miền \[\left[ { - \frac{1}{2}; + \infty } \right)\] ∖ {0}
Dựa vào bảng biến thiên ta được giá trị của m thỏa mãn yêu cầu bài toán là \[m \ge \frac{9}{2}.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Vì ΔBHC vuông tại H nên H nằm trên đường tròn đường kính BC
Do đó H nằm trên (O) đường kính BC.
Vì ΔBKC vuông tại K nên K nằm trên đường tròn đường kính BC
Do đó K nằm trên (O) đường kính BC.
b) Xét ΔKBC vuông tại K và ΔHCB vuông tại H có:
BC là cạnh chung
\[\widehat {KBC} = \widehat {HCB}\] (ΔABC cân tại A)
Do đó: ΔKBC = ΔHCB (cạnh huyền – góc nhọn)
Xét (O) có:
\[\widehat {KCB}\] là góc nội tiếp chắn cung BK
\[\widehat {HBC}\] là góc nội tiếp chắn cung HC
Mà \[\widehat {KCB} = \widehat {HBC}\] nên
c) Xét ∆ABH vuông tại H, ta có: \[\widehat {ABH} + \widehat {BAH} = 90^\circ \]
Suy ra \[\widehat {ABH} = 90^\circ - \widehat {BAH} = 90^\circ - 40^\circ = 50^\circ .\]
Lại có \(\widehat {KBH}\) là góc nội tiếp chắn cung KH của đường tròn (O)Lời giải
Lời giải:
Đáp án đúng là: D
Có 6 tập con gồm 2 phần tử của A là:
{0; 3}; {0; 4}; {0; 6}; {3; 4}; {3; 6}; {4; 6}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.