Câu hỏi:
10/05/2025 67Quảng cáo
Trả lời:
Lời giải:
Cách 1: Xét phương trình: \[\sqrt {{x^2} + mx + 2} = 2x + 1\]
Với \[x \ge - \frac{1}{2}\], ta có:
x2 + mx + 2 = (2x + 1)2
x2 + mx + 2 = 4x2 + 4x + 1
3x2 + (4 – m)x – 1 = 0
Phương trình trên có ∆ = (4 – m)2 – 4.3.(– 1) = (4 – m)2 + 12 > 0 với mọi m.
Như vậy, phương trình trên có hai nghiệm phân biệt x1, x2 với mọi m.
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{m - 4}}{3}\\{x_1}{x_2} = - \frac{1}{3}\end{array} \right.\)
Để phương trình đã cho có hai nghiệm phân biệt thì \[{x_1} \ge - \frac{1}{2},\,\,{x_2} \ge - \frac{1}{2}\]
Suy ra \[{x_1} + \frac{1}{2} \ge 0,\,\,{x_2} + \frac{1}{2} \ge 0\]
Do đó \[\left\{ \begin{array}{l}\left( {{x_1} + \frac{1}{2}} \right) + \left( {{x_2} + \frac{1}{2}} \right) \ge 0\\\left( {{x_1} + \frac{1}{2}} \right)\left( {{x_2} + \frac{1}{2}} \right) \ge 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}{x_1} + {x_2} \ge - \frac{1}{4}\\{x_1}{x_2} + \frac{1}{2}\left( {{x_1} + {x_2}} \right) + \frac{1}{4} \ge 0\end{array} \right.\]
Nên \[\left\{ \begin{array}{l}\frac{{m - 4}}{3} \ge - \frac{1}{4}\\ - \frac{1}{3} + \frac{1}{2} \cdot \frac{{m - 4}}{3} + \frac{1}{4} \ge 0\end{array} \right.\] suy ra \[\left\{ \begin{array}{l}m \ge \frac{{13}}{4}\\m \ge \frac{9}{2}\end{array} \right.\] do đó \[m \ge \frac{9}{2}\].
Vậy \[m \ge \frac{9}{2}\] thỏa mãn yêu cầu đề bài.
Cách 2: Để phương trình đã cho có hai nghiệm phân biệt thì
2x + 1 ≥ 0 và x2 + mx + 2 = (2x + 1)2
\[x \ge - \frac{1}{2}\] và mx = 3x2 + 4x ‒1 (*)
Xét phương trình (*)
Với x = 0, suy ra 0x = ‒1 (vô nghiệm)
Với x ≠ 0 suy ra \[3x + 4 - \frac{1}{x} = m\]
Xét hàm số \[f\left( x \right) = 3x + 4 - \frac{1}{x}\] trên tập \[\left[ { - \frac{1}{2}; + \infty } \right) \setminus \left\{ 0 \right\}\]
\[f'\left( x \right) = 3 + \frac{1}{{{x^2}}} > 0\] với mọi x ∈ \[\left[ { - \frac{1}{2}; + \infty } \right) \setminus \left\{ 0 \right\}\]
Giới hạn:
\[\mathop {\lim }\limits_{x \to {0^ \pm }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ \pm }} \left( {3x + 4 - \frac{1}{x}} \right) = \mp \infty ;\]
\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {3x + 4 - \frac{1}{x}} \right) = + \infty \]
Bảng biến thiên:
Số nghiệm của phương trình (1) bằng số giao điểm của đồ thị hàm số \[f\left( x \right) = 3x + 4 - \frac{1}{x}\] và đường thẳng y = m trên miền \[\left[ { - \frac{1}{2}; + \infty } \right)\] ∖ {0}
Dựa vào bảng biến thiên ta được giá trị của m thỏa mãn yêu cầu bài toán là \[m \ge \frac{9}{2}.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
ABCD là hình vuông nên OA = OC
Suy ra d(A, (SBD)) = d(C, (SBD))
Kẻ AH ⊥ SO
BD ⊥ AO, BD ⊥ SA nên BD ⊥ (SAO).
Suy ra BD ⊥ AH.
AH ⊥ (SBD) nên d(A,(SBD)) = AH
Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]
SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]
Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]
Lời giải
Lời giải:
Ta có: f(0) = a.02 + b.0 + c = c ∈ ℤ
f(1) = a.12 + b.1 + c = a + b + c ∈ ℤ
Nên a + b ∈ ℤ
f(2) = a.22 + b.2 + c = 4a + 2b + c ∈ ℤ
mà 4a + 2b + c = 2a + 2a + 2b + c = 2a + 2(a + b) + c
Nên 2a ∈ ℤ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)