Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm SC và I là giao điểm của AM và mặt phẳng (SBD). Biết DSAC vuông tại S và AC = 6. Tính độ dài đoạn OI.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm SC và I là giao điểm của AM và mặt phẳng (SBD). Biết DSAC vuông tại S và AC = 6. Tính độ dài đoạn OI.
Quảng cáo
Trả lời:
Trong (SAC), gọi I = AM Ç SO. Suy ra I là trọng tâm DSAC.
Ta có \(\left. \begin{array}{l}I \in AM\\I \in SO \subset \left( {SBD} \right)\end{array} \right\} \Rightarrow I = AM \cap \left( {SBD} \right)\).
Suy ra \(OI = \frac{1}{3}SO = \frac{1}{3}.\frac{1}{2}AC = \frac{1}{3}.\frac{1}{2}.6 = 1\).
Trả lời: 1.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
C
Qua ba điểm phân biệt không thẳng hàng thì chỉ xác định được 1 và chỉ 1 mặt phẳng. Ở đây thuộc hai mặt phẳng phân biệt nên ít nhất 1 trong 2 điều kiện phân biệt hoặc thẳng hàng không thỏa mãn. Mà 3 điểm đề cho đã phân biệt nên chúng phải thẳng hàng.
Lời giải
C
Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.