Câu hỏi:

29/05/2025 38

PHẦN II. TRẢ LỜI NGẮN

Cho lăng trụ ABC.A'B'C'. Gọi M là trung điểm của AC. Gọi N là hình chiếu song song của điểm M lên (AA'B') theo phương chiếu CB. Tính tỉ số \(\frac{{AB}}{{NB}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

V (ảnh 1)

Ta có (AA'B') ≡ (AA'B'B).

Trong mặt phẳng (ABC), kẻ MN // CB (N Î AB).

Do đó N là hình chiếu của M lên (AA'B') theo phương chiếu CB.

Vì M là trung điểm AC và MN // CB nên N là trung điểm AB.

Do đó \(\frac{{AB}}{{NB}} = 2\).

Trả lời: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

X (ảnh 1)

Trong mặt phẳng (ABC), kẻ MM' // AC (M' Î BC).

Trong mặt phẳng (ADC), kẻ NN' // AC (N' Î DC).

Do đó M'N' là hình chiếu của của MN theo phương AC trên mặt phẳng (BCD).

Vì MM' // AC nên \(\frac{{AM}}{{AB}} = \frac{{CM'}}{{CB}} = \frac{1}{3}\)(1).

Vì NN' // AC nên \(\frac{{AN}}{{AD}} = \frac{{CN'}}{{CD}} = \frac{1}{3}\) (2).

Từ (1) và (2) suy ra M'N' // BD.

Xét DBCD, có M'N' // BD nên \[\frac{{CN'}}{{CD}} = \frac{{M'N'}}{{BD}} = \frac{1}{3} \approx 0,33\].

Trả lời: 0,33.

Lời giải

Một phép chiếu song song theo phương MO lên mặt phẳng (ABCD) biến điểm S thành điểm N. (ảnh 1)

a) Trong mặt phẳng (SAC), kẻ SN // MO (N Î AC).

b) Vì MO // SN nên \(\frac{{AM}}{{AS}} = \frac{{AO}}{{AN}} = \frac{2}{3}\).

c) Vì \(\frac{{AO}}{{AN}} = \frac{2}{3} \Rightarrow \frac{{NO}}{{AO}} = \frac{{NO}}{{OC}} = \frac{1}{2}\). Suy ra N là trung điểm của OC.

Do đó \(\frac{{AN}}{{AC}} = \frac{3}{4}\).

d) Có \(\frac{{AN}}{{AC}} = \frac{3}{4}\) Þ \(\frac{{CN}}{{AC}} = \frac{1}{4}\).

Đáp án: a) Đúng;   b) Sai;   c) Sai;    d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình lăng trụ \[ABC.A'B'C'\], qua phép chiếu song song đường thẳng \[CC'\], mặt phẳng chiếu \[\left( {A'B'C'} \right)\] biến \[M\] thành \[M'\]. Trong đó \[M\] là trung điểm của \[BC\]. Chọn mệnh đề đúng? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay