Câu hỏi:

29/05/2025 34

Cho hình bình hành ABCD và một điểm S không thuộc mặt phẳng (ABCD), các điểm M, N lần lượt là trung điểm của đoạn thẳng AB, SC. Gọi O = AC Ç BD.

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Giao điểm I của đường thẳng AN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SD.

c) Giao điểm J của đường thẳng MN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SO.

d) Ba điểm I, J, B thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD). (ảnh 1)

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Trong mặt phẳng (ABCD) có O = AC Ç BD.

Trong (SAC), gọi I = SO Ç AN.

Ta có \(\left\{ \begin{array}{l}I \in AN\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I = AN \cap \left( {SBD} \right)\).

Vậy điểm I là điểm nằm trên đường thẳng SO.

c) Trong (ABCD), gọi P = CM Ç BD.

Trong (SCM), gọi J = MN Ç SP.

Ta có \(\left\{ \begin{array}{l}J \in MN\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J = MN \cap \left( {SBD} \right)\).

Vậy J là điểm nằm trên đường thẳng SP.

d) Dễ thấy B Î (ABN) Ç (SBD) (1).

Ta có \(\left\{ \begin{array}{l}I \in AN,AN \subset \left( {ABN} \right)\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (2).

Tương tự \(\left\{ \begin{array}{l}J \in MN,MN \subset \left( {ABN} \right)\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (3).

Từ (1), (2), (3) suy ra B, I, J cùng thuộc giao tuyến của hai mặt phẳng (ABN) và (SBD) nên ba điểm này thẳng hàng.

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Các điểm M, N lần lượt là trung điểm của các cạnh SA, SD. Khi đó MN song song với mặt phẳng nào dưới đây? 

Lời giải

C

Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Các điểm M, N lần lượt là trung điểm của các cạnh SA, SD. Khi đó MN song song với mặt phẳng nào dưới đây?  	 (ảnh 1)

Do MN là đường trung bình của tam giác SAD nên MN // AD.

Mà AD // BC (do ABCD là hình thang).

Suy ra BC // MN.

Lại có BC Ì (SBC) nên MN // (SBC).

Lời giải

Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng đi qua S và song song với AC, BD. (ảnh 1)

 

a) Ta có \(\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\AB//CD\\AB \subset \left( {SAB} \right),CD \subset \left( {SCD} \right)\end{array} \right.\)Þ (SAB) Ç (SCD) = Sx // AB // CD.

b) Gọi O là tâm hình bình hành ABCD.

Vì N là trọng tâm của DABC nên \(BN = \frac{2}{3}BO = \frac{2}{3}.\frac{1}{2}BD = \frac{1}{3}BD\) Þ \(\frac{{DN}}{{DB}} = \frac{2}{3}\).

c) Ta có AD = 3AN \( \Rightarrow \frac{{DM}}{{DA}} = \frac{2}{3}\).

Xét tam giác ADB có \(\frac{{DM}}{{DA}} = \frac{{DN}}{{DB}} = \frac{2}{3}\) nên MN // AB Þ MN // CD

mà CD Ì (SCD) Þ MN // (SCD).

d) Gọi P là trung điểm AB.

Tam giác SPC có \(\frac{{PG}}{{PS}} = \frac{{PN}}{{PC}} = \frac{1}{3}\) suy ra NG // SC mà SC Ì (SAC) Þ NG // (SAC).

Đáp án: a) Sai;   b) Sai;   c) Đúng;   d) Sai.

Câu 3

Cho hình hộp ABCD. A'B'C'D'. Mặt phẳng (AB'D') song song với mặt phẳng nào sau đây? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho tứ diện ABCD. I và J theo thứ tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GIJ) và (BCD) là đường thẳng 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay