Câu hỏi:

19/08/2025 333 Lưu

Cho hình bình hành ABCD và một điểm S không thuộc mặt phẳng (ABCD), các điểm M, N lần lượt là trung điểm của đoạn thẳng AB, SC. Gọi O = AC Ç BD.

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Giao điểm I của đường thẳng AN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SD.

c) Giao điểm J của đường thẳng MN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SO.

d) Ba điểm I, J, B thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD). (ảnh 1)

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Trong mặt phẳng (ABCD) có O = AC Ç BD.

Trong (SAC), gọi I = SO Ç AN.

Ta có \(\left\{ \begin{array}{l}I \in AN\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I = AN \cap \left( {SBD} \right)\).

Vậy điểm I là điểm nằm trên đường thẳng SO.

c) Trong (ABCD), gọi P = CM Ç BD.

Trong (SCM), gọi J = MN Ç SP.

Ta có \(\left\{ \begin{array}{l}J \in MN\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J = MN \cap \left( {SBD} \right)\).

Vậy J là điểm nằm trên đường thẳng SP.

d) Dễ thấy B Î (ABN) Ç (SBD) (1).

Ta có \(\left\{ \begin{array}{l}I \in AN,AN \subset \left( {ABN} \right)\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (2).

Tương tự \(\left\{ \begin{array}{l}J \in MN,MN \subset \left( {ABN} \right)\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (3).

Từ (1), (2), (3) suy ra B, I, J cùng thuộc giao tuyến của hai mặt phẳng (ABN) và (SBD) nên ba điểm này thẳng hàng.

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại. 
B. Nếu một đường thẳng cắt một trong hai mặt phẳng song song thì nó cắt mặt phẳng còn lại. 
C. Nếu hai đường thẳng song song thì chúng cùng nằm trên một mặt phẳng. 
D. Nếu hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì chúng song song với nhau.

Lời giải

A

Giả sử (α) // (β).

Một đường thẳng a song song với (β) thì a có thể nằm trên (α).

Lời giải

D

Cho 4 điểm A, B, C, D không cùng nằm trên một mặt phẳng. Trên AB, AD lần lượt lấy 2 điểm M, N sao cho MN cắt BD tại I. Điểm I không thuộc mặt phẳng nào sau đây?   (ảnh 1)

Vì I = MN Ç BD nên I Î (ABD), I Î (BCD), I Î (CMN).

Câu 3

A. (SAC).                 
B. (SBD).                 
C. (SBC).                          
D. (SCD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. qua I và song song với AB.                      
B. qua J và song song với BD.                           
C. qua G và song song với CD.                     
D. qua G và song song với BC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP