Câu hỏi:

29/05/2025 50

Cho hình bình hành ABCD và một điểm S không thuộc mặt phẳng (ABCD), các điểm M, N lần lượt là trung điểm của đoạn thẳng AB, SC. Gọi O = AC Ç BD.

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Giao điểm I của đường thẳng AN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SD.

c) Giao điểm J của đường thẳng MN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SO.

d) Ba điểm I, J, B thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD). (ảnh 1)

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Trong mặt phẳng (ABCD) có O = AC Ç BD.

Trong (SAC), gọi I = SO Ç AN.

Ta có \(\left\{ \begin{array}{l}I \in AN\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I = AN \cap \left( {SBD} \right)\).

Vậy điểm I là điểm nằm trên đường thẳng SO.

c) Trong (ABCD), gọi P = CM Ç BD.

Trong (SCM), gọi J = MN Ç SP.

Ta có \(\left\{ \begin{array}{l}J \in MN\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J = MN \cap \left( {SBD} \right)\).

Vậy J là điểm nằm trên đường thẳng SP.

d) Dễ thấy B Î (ABN) Ç (SBD) (1).

Ta có \(\left\{ \begin{array}{l}I \in AN,AN \subset \left( {ABN} \right)\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (2).

Tương tự \(\left\{ \begin{array}{l}J \in MN,MN \subset \left( {ABN} \right)\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (3).

Từ (1), (2), (3) suy ra B, I, J cùng thuộc giao tuyến của hai mặt phẳng (ABN) và (SBD) nên ba điểm này thẳng hàng.

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Các điểm M, N lần lượt là trung điểm của các cạnh SA, SD. Khi đó MN song song với mặt phẳng nào dưới đây?  	 (ảnh 1)

Do MN là đường trung bình của tam giác SAD nên MN // AD.

Mà AD // BC (do ABCD là hình thang).

Suy ra BC // MN.

Lại có BC Ì (SBC) nên MN // (SBC).

Câu 2

Lời giải

A

Giả sử (α) // (β).

Một đường thẳng a song song với (β) thì a có thể nằm trên (α).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP