Câu hỏi:

30/05/2025 32

Giá trị của giới hạn \[{\rm{S}} = 2 + \frac{2}{7} + \frac{2}{{49}} + ... + \frac{2}{{{7^{\rm{n}}}}} + ...\] là: 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

B

Đây là một cấp số nhân lùi vô hạn có \[{{\rm{u}}_{\rm{1}}}{\rm{ = 2, q}} = \frac{1}{7}\]

Do đó \[{\rm{S}} = \frac{{{{\rm{u}}_{\rm{1}}}}}{{1 - {\rm{q}}}} = \frac{7}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

\(3,15555... = 3,1\left( 5 \right) = 3,1 + 5\left( {\frac{1}{{{{10}^2}}} + \frac{1}{{{{10}^3}}} + ...} \right) = 3,1 + 5.\frac{{\frac{1}{{{{10}^2}}}}}{{1 - \frac{1}{{10}}}} = \frac{{142}}{{45}}\).

Câu 2

Lời giải

B

\[\mathop {\lim }\limits_{n \to + \infty } \frac{{{{\rm{3}}^{\rm{n}}} - {\rm{2}}{\rm{.}}{{\rm{5}}^{{\rm{n + 1}}}}}}{{{{\rm{2}}^{{\rm{n + 1}}}}{\rm{ + }}{{\rm{5}}^{\rm{n}}}}}{\rm{ = }}\mathop {\lim }\limits_{n \to + \infty } \frac{{{{\left( {\frac{{\rm{3}}}{{\rm{5}}}} \right)}^{\rm{n}}} - {\rm{10}}}}{{{\rm{2}}{\rm{.}}{{\left( {\frac{{\rm{2}}}{{\rm{5}}}} \right)}^{\rm{n}}}{\rm{ + 1}}}}{\rm{ = }}\frac{{ - {\rm{10}}}}{{\rm{1}}}{\rm{ = }} - {\rm{10}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP