Câu hỏi:
30/05/2025 45
Biết giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 1}}{{3{n^3} - 3n + 3}} = a\) và \(\mathop {\lim }\limits_{n \to + \infty } \frac{{n\sqrt {{n^2} + 1} }}{{\sqrt {4{n^4} - {n^2} + 3} }} = b\). Khi đó:
a) Giá trị \(a\) nhỏ hơn 0.
b) Giá trị \(b\) lớn hơn 0.
c) Phương trình lượng giác \(\cos x = a\) có một nghiệm là \(x = \frac{\pi }{2}\).
d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = b\) và \({u_1} = a\), thì \({u_3} = \frac{3}{2}\).
Biết giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 1}}{{3{n^3} - 3n + 3}} = a\) và \(\mathop {\lim }\limits_{n \to + \infty } \frac{{n\sqrt {{n^2} + 1} }}{{\sqrt {4{n^4} - {n^2} + 3} }} = b\). Khi đó:
a) Giá trị \(a\) nhỏ hơn 0.
b) Giá trị \(b\) lớn hơn 0.
c) Phương trình lượng giác \(\cos x = a\) có một nghiệm là \(x = \frac{\pi }{2}\).
d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = b\) và \({u_1} = a\), thì \({u_3} = \frac{3}{2}\).
Quảng cáo
Trả lời:
a) Ta có: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 1}}{{3{n^3} - 3n + 3}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^3}\left( {\frac{2}{n} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {3 - \frac{3}{{{n^2}}} + \frac{3}{{{n^3}}}} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\frac{2}{n} + \frac{1}{{{n^3}}}}}{{3 - \frac{3}{{{n^2}}} + \frac{3}{{{n^3}}}}} = \frac{0}{3} = 0\).
b) Ta có: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{n\sqrt {{n^2} + 1} }}{{\sqrt {4{n^4} - {n^2} + 3} }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\sqrt {1 + \frac{1}{{{n^2}}}} }}{{{n^2}\sqrt {4 - \frac{1}{{{n^2}}} + \frac{3}{{{n^4}}}} }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt {1 + \frac{1}{{{n^2}}}} }}{{\sqrt {4 - \frac{1}{{{n^2}}} + \frac{3}{{{n^4}}}} }} = \frac{1}{2}\).
c) Phương trình lượng giác \(\cos x = 0\) có một nghiệm là \(x = \frac{\pi }{2}\).
d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\) và \({u_1} = 0\), thì \({u_3} = 0 + 2.\frac{1}{2} = 1\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Có \(3,15555... = 3,1\left( 5 \right) = 3,1 + 5\left( {\frac{1}{{{{10}^2}}} + \frac{1}{{{{10}^3}}} + ...} \right) = 3,1 + 5.\frac{{\frac{1}{{{{10}^2}}}}}{{1 - \frac{1}{{10}}}} = \frac{{142}}{{45}}\).
Lời giải
Ta có \(1 + 2 + ... + n = \frac{{n\left( {n + 1} \right)}}{2}\).
Khi đó \(\mathop {\lim }\limits_{n \to + \infty } \frac{{1 + 2 + ... + n}}{{{n^2} + 3n}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{n\left( {n + 1} \right)}}{{2\left( {{n^2} + 3n} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\left( {1 + \frac{1}{n}} \right)}}{{2{n^2}\left( {1 + \frac{3}{n}} \right)}} = \frac{1}{2}\).
Trả lời: 0,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.