Câu hỏi:
30/05/2025 21Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ khi t dần về dương vô cùng (đơn vị: gam/lít) là bao nhiêu?
Quảng cáo
Trả lời:
Sau t phút bơm nước vào hồ thì lượng nước là 600 + 15t (lít) và lượng muối có được là 30.15t gam.
Nồng độ muối của nước là \(C\left( t \right) = \frac{{30.15t}}{{600 + 15t}} = \frac{{30t}}{{40 + t}}\) (gam/lít).
Khi t dần về dương vô cùng, ta có \(\mathop {\lim }\limits_{t \to + \infty } C\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{30t}}{{40 + t}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{30}}{{\frac{{40}}{t} + 1}} = 30\) (gam/lít).
Trả lời: 30.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
PHẦN II. TRẢ LỜI NGẮN
Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 7ax + 5} + x} \right) = - 3\) với a Î \(\mathbb{Q}\). Tìm giá trị của a (kết quả làm tròn đến hàng phần trăm).
Câu 2:
Cho hàm số f(x) = x2 – 3x + 2.
a) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{x - 1}} = - 1\).
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^2} - 1}} = \frac{1}{4}\).
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^3} - {x^2} + x - 1}} > 0\).
d) Để \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{ax + b}} = 2\) thì a + 3b = 1.
Câu 3:
Câu 4:
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}\;\;\;\;\;\;khi\;\;x > 2\\ax + 2024\;khi\;\;x \le 2\end{array} \right.\).
a) f(2) = 0.
b) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 4\).
c) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = - 4\).
d) a = −1010 thì hàm số f(x) có giới hạn khi x → 2.
Câu 5:
Cho hai số thực a và b thỏa mãn \(\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{4{x^2} - 3x + 2}}{{x + 2}} - 2ax + b} \right) = 0\). Giá trị 2a – 3b bằng bao nhiêu?
Câu 6:
Câu 7:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 1 + 2m\;khi\;\;x < 2\\\sqrt {x + 7} \;\;\;\;\;\;\;\;khi\;\;x \ge 2\end{array} \right.\) (m là tham số).
a) Khi m = −1 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\).
b) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 5\).
c) Tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) khi m = −3.
d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 3\).
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận