Có bao nhiêu giá trị nguyên của tham số m để \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {{m^2} - 4m + 3} \right){x^4} - x + 2025} \right] = - \infty \).
Có bao nhiêu giá trị nguyên của tham số m để \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {{m^2} - 4m + 3} \right){x^4} - x + 2025} \right] = - \infty \).
Quảng cáo
Trả lời:
Ta có \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {{m^2} - 4m + 3} \right){x^4} - x + 2025} \right] = - \infty \)
\( \Leftrightarrow \mathop {\lim }\limits_{x \to - \infty } {x^4}\left[ {\left( {{m^2} - 4m + 3} \right) - \frac{1}{{{x^3}}} + \frac{{2025}}{{{x^4}}}} \right] = - \infty \).
Vì \(\mathop {\lim }\limits_{x \to - \infty } {x^4} = + \infty \) và \(\mathop {\lim }\limits_{x \to - \infty } \left( {{m^2} - 4m + 3 - \frac{1}{{{x^3}}} + \frac{{2025}}{{{x^4}}}} \right) = {m^2} - 4m + 3\).
Để \(\mathop {\lim }\limits_{x \to - \infty } {x^4}\left[ {\left( {{m^2} - 4m + 3} \right) - \frac{1}{{{x^3}}} + \frac{{2025}}{{{x^4}}}} \right] = - \infty \)thì m2 – 4m + 3 < 0 Û 1 < m < 3.
Mà m Î ℤ nên m = 2.
Vậy có 1 giá trị nguyên.
Trả lời: 1.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 7ax + 5} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{7ax + 5}}{{\sqrt {{x^2} + 7ax + 5} - x}}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {7a + \frac{5}{x}} \right)}}{{x\left( { - \sqrt {1 + \frac{{7a}}{x} + \frac{5}{{{x^2}}}} - 1} \right)}} = - \frac{{7a}}{2}\).
Mà \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 7ax + 5} + x} \right) = - 3\) nên \( - \frac{{7a}}{2} = - 3\)\( \Leftrightarrow a = \frac{6}{7} \approx 0,86\).
Trả lời: 0,86.
Lời giải
\(\mathop {\lim }\limits_{x \to 0} \frac{{4x}}{{3 - \sqrt {9 + x} }}\)\( = \mathop {\lim }\limits_{x \to 0} \frac{{4x\left( {3 + \sqrt {9 + x} } \right)}}{{9 - \left( {9 + x} \right)}}\)\( = \mathop {\lim }\limits_{x \to 0} \left[ { - 4\left( {3 + \sqrt {9 + x} } \right)} \right] = - 24\).
Trả lời: −24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.