Câu hỏi:

30/05/2025 130 Lưu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 1 + 2m\;khi\;\;x < 2\\\sqrt {x + 7} \;\;\;\;\;\;\;\;khi\;\;x \ge 2\end{array} \right.\) (m là tham số).

a) Khi m = −1 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\).

b) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 5\).

c) Tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) khi m = −3.

d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Với m = −1 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 1 - 2} \right) = 4 - 1 - 2 = 1\).

b) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \sqrt {x + 7} = \sqrt {3 + 7} = \sqrt {10} \).

c) Ta có \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 1 + 2m} \right) = 3 + 2m.\)

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \sqrt {x + 7} = 3\).

Để tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) Û 3 + 2m = 3 Û m = 0.

d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \sqrt {x + 7} = 3\).

Đáp án: a) Đúng; b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 7ax + 5} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{7ax + 5}}{{\sqrt {{x^2} + 7ax + 5} - x}}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {7a + \frac{5}{x}} \right)}}{{x\left( { - \sqrt {1 + \frac{{7a}}{x} + \frac{5}{{{x^2}}}} - 1} \right)}} = - \frac{{7a}}{2}\).

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 7ax + 5} + x} \right) = - 3\) nên \( - \frac{{7a}}{2} = - 3\)\( \Leftrightarrow a = \frac{6}{7} \approx 0,86\).

Trả lời: 0,86.

Lời giải

\(\mathop {\lim }\limits_{x \to 0} \frac{{4x}}{{3 - \sqrt {9 + x} }}\)\( = \mathop {\lim }\limits_{x \to 0} \frac{{4x\left( {3 + \sqrt {9 + x} } \right)}}{{9 - \left( {9 + x} \right)}}\)\( = \mathop {\lim }\limits_{x \to 0} \left[ { - 4\left( {3 + \sqrt {9 + x} } \right)} \right] = - 24\).

Trả lời: −24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\( - \infty \).          
B. \( + \infty \).        
C. 2. 
D. −3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP