Câu hỏi:

30/05/2025 17

Phương trình 3x5 + 5x3 + 10 = 0 có nghiệm thuộc khoảng nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

Đặt f(x) = 3x5 + 5x3 + 10.

Vì f(x) liên tục trên ℝ nên f(x) liên tục trên [−2; −1] (1).

Ta có \(\left\{ \begin{array}{l}f\left( { - 2} \right) = - 126\\f\left( { - 1} \right) = 2\end{array} \right.\). Suy ra f(−2).f(−1) = −126.2 = −252 < 0 (2).

Từ (1) và (2) suy ra f(x) = 0 có nghiệm thuộc khoảng (−2; −1).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số liên tục tại x = 1 khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).

Mà f(1) = n là số hữu hạn, suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) hữu hạn nên x = 1 là nghiệm của x3 + 8x + m = 0

Þ m = −9.

Khi đó \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + 8x - 9}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 9} \right)}}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).

Suy ra n = 11. Vậy m + n = −9 + 11 = 2.

Trả lời: 2.

Lời giải

Với x Î (0; 1) thì T(x) = 15000 liên tục trên (0; 1).

Với x Î (1; 20) thì T(x) = a + (x – 1).14000 liên tục trên (1; 20).

Với x Î (20; +∞) thì T(x) = b + (x – 20).12000 liên tục trên (20; +∞).

Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to {1^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} T\left( x \right) = T\left( 1 \right) \Rightarrow a = 15000\).

Để hàm liên tục tại x = 20 thì \(\mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = T\left( {20} \right) \Rightarrow b = 15000 + 14000.19 = 281000\).

Vậy \(\frac{b}{a} = \frac{{281}}{{15}} \approx 18,7\).

Trả lời: 18,7.

Câu 3

Cho hàm số \(y = f\left( x \right)\) liên tục trên ℝ. Điều kiện cần và đủ để hàm số liên tục trên \(\left[ {a;\,b} \right]\) là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Hàm số nào dưới đây gián đoạn tại điểm \({x_0} =  - 1\). 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hàm số f(x) xác định trên ℝ, liên tục tại x = 2 và thỏa mãn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 4\). Khi đó ta phải gán f(2) bằng bao nhiêu? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay