Câu hỏi:

30/05/2025 36

PHẦN II. TRẢ LỜI NGẮN

Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{{x^2} + x + 1}&{{\rm{ khi }}x \ne 4}\\{2a + 1}&{{\rm{ khi }}x = 4}\end{array}} \right.\). Tìm \(a\) để hàm số liên tục tại \({x_0} = 4\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(f\left( {{x_0}} \right) = f(4) = 2a + 1\).

\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = \mathop {\lim }\limits_{x \to 4} \left( {{x^2} + x + 1} \right) = 21\).

Để hàm số liên tục tại điểm \({x_0} = 4\) thì \(\mathop {\lim }\limits_{x \to 4} f(x) = f(4)\).

\( \Rightarrow 2a + 1 = 21 \Leftrightarrow a = 10\).

Trả lời: 10.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số liên tục tại x = 1 khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).

Mà f(1) = n là số hữu hạn, suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) hữu hạn nên x = 1 là nghiệm của x3 + 8x + m = 0

Þ m = −9.

Khi đó \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + 8x - 9}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 9} \right)}}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).

Suy ra n = 11. Vậy m + n = −9 + 11 = 2.

Trả lời: 2.

Câu 2

Lời giải

C

Theo định nghĩa hàm số liên tục trên đoạn \(\left[ {a;\,b} \right]\).

Chọn: \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\)\(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP