Câu hỏi:

30/05/2025 80 Lưu

Tính \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - x + 1}}{{2 - x}}\). 

A. −1.                       
B. 0.                         
C. +∞.                               
D. −∞.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

D

\(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - x + 1}}{{2 - x}}\)\[ = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2}\left( {1 - \frac{1}{x} + \frac{1}{{{x^2}}}} \right)}}{{x\left( {\frac{2}{x} - 1} \right)}} = - \infty \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

D

\(\mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {a - 1} \right)n + 2}}{{2n + 9}} = 1\)\( \Leftrightarrow \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {a - 1} \right) + \frac{2}{n}}}{{2 + \frac{9}{n}}} = 1\)\( \Leftrightarrow \frac{{a - 1}}{2} = 1\)\( \Leftrightarrow a = 3\).

Lời giải

\(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 3n} - n} \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + 3n - {n^2}}}{{\sqrt {{n^2} + 3n} + n}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{3n}}{{n\left( {\sqrt {1 + \frac{3}{n}} + 1} \right)}} = \frac{3}{2} = 1,5\).

Trả lời: 1,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. (1; 2).                  
B. (−1; 2).                
C. (−∞; 2).
D. (1; +∞).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP