Câu hỏi:

30/05/2025 13

Biết giới hạn \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = a\) và \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = b\). Khi đó:

a) \(\mathop {\lim }\limits_{n \to  + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = a\).

b) \(x = b\) là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.

c) \(\mathop {\lim }\limits_{n \to  + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).

d) Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d = \frac{1}{2}\) và \({u_1} = b\), thì \({u_3} = 2\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{n\left( { - 3{n^2} + \frac{1}{n}} \right)}}{{n\left( {2 + \frac{5}{n}} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^2} + \frac{1}{n}}}{{2 + \frac{5}{n}}} = - \infty \),

do \(\left\{ {\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = - \infty }\\{\mathop {\lim }\limits_{n \to + \infty } \left( {2 + \frac{5}{n}} \right) = 2}\end{array}} \right.\)

\(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {5^{2n}}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{( - 1)}^n} \cdot {5^n}}}{{{2^n} + {{25}^n}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{25}^n} \cdot {{\left( {\frac{{ - 1}}{5}} \right)}^n}}}{{{{25}^n}\left[ {{{\left( {\frac{2}{{25}}} \right)}^n} + 1} \right]}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{\left( {\frac{{ - 1}}{5}} \right)}^n}}}{{{{\left( {\frac{2}{{25}}} \right)}^n} + 1}} = 0\).

a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{ - 3{n^3} + 1}}{{2n + 5}} = \mathop {\lim }\limits_{n \to + \infty } \left( { - 3{n^2} + \frac{1}{n}} \right) = - \infty \).

b) x = 0 là hoành độ giao điểm của đường thẳng \(y = 2x\) với trục hoành.

c) \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{{2024}}} \right)^n} = b\).

d) u1 = 0; u3 = 0 + 2d = 1.

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {4{x^2} - x + 11} }}{{x + 2025}}\).

Xem đáp án » 30/05/2025 19

Câu 2:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}\;\;khi\;x \ne 2\\3m\;\;\;\;\;\;\;\;khi\;x = 2\end{array} \right.\) với m là tham số. Để hàm số liên tục tại điểm x0 = 2 thì giá trị của m bằng bao nhiêu (kết quả làm tròn đến chữ số thập phân thứ hai).

Xem đáp án » 30/05/2025 16

Câu 3:

Cho \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) =  - 3\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 5\). Giá trị của \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) bằng 

Xem đáp án » 30/05/2025 14

Câu 4:

PHẦN II. TRẢ LỜI NGẮN

Tính \(\mathop {\lim }\limits_{n \to  + \infty } \left( {\sqrt {{n^2} + 3n}  - n} \right)\).

Xem đáp án » 30/05/2025 14

Câu 5:

Biết các số thực a, b thỏa mãn \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + ax + b}}{{x - 1}} = 2025\). Tính 2a +b.

Xem đáp án » 30/05/2025 14

Câu 6:

Cho hàm số \(f\left( x \right) = \frac{{2{x^2} - 5x + 2}}{{x - 2}}\).

a) Tập xác định D = R\{2}.

b) \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \frac{3}{2}\).

c) f(2) không tồn tại.

d) Hàm số đã cho gián đoạn tại điểm x0 = 2.

Xem đáp án » 30/05/2025 13
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay