Câu hỏi:

30/05/2025 15

Biết rằng 3x = 5, giá trị của biểu thức \(P = {81^x} + \sqrt[4]{{{3^x}}}.\sqrt[4]{{{{27}^x}}}\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(P = {81^x} + \sqrt[4]{{{3^x}}}.\sqrt[4]{{{{27}^x}}}\)\( = {\left( {{3^4}} \right)^x} + \sqrt[4]{{{3^x}{{.27}^x}}}\)\( = {\left( {{3^4}} \right)^x} + \sqrt[4]{{{{\left( {{3^x}} \right)}^4}}}\)\( = {5^4} + 5 = 630\).

Trả lời: 630.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một người gửi số tiền 500 triệu đồng vào ngân hàng với lãi suất 6,5% một năm theo hình thức lãi kép.

a) Lãi suất của ngân hàng là 0,65 trong một năm.

b) Sau khi gửi 1 năm, số tiền mà người đó có trong ngân hàng là 532 500 000 đồng.

c) Sau khi gửi 3 năm, số tiền mà người đó có trong ngân hàng nhiều hơn 600 000 000 đồng.

d) Do thiếu tiền nên ở cuối năm thứ 3, người đó đã rút 100 triệu đồng từ ngân hàng và tiếp tục gửi thêm 2 năm nữa thì rút toàn bộ số tiền. Lúc này, số tiền người này rút được nhiều hơn 670 000 000 đồng.

Xem đáp án » 30/05/2025 49

Câu 2:

Biết biểu thức \(P = {\left( {5 + 2\sqrt 6 } \right)^{2024}}.{\left( {5 - 2\sqrt 6 } \right)^{2025}} = a - 2\sqrt c \) với a; c là số tự nhiên. Tính giá trị \({a^{c - 2}}\).

Xem đáp án » 30/05/2025 18

Câu 3:

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho biểu thức \({9^{\frac{2}{5}}} \cdot {27^{\frac{2}{5}}} = A\) và \({144^{\frac{3}{4}}}:{9^{\frac{3}{4}}} = B\), khi đó:

a) \({9^{\frac{2}{5}}} \cdot {27^{\frac{2}{5}}} = {(9 \cdot 27)^{\frac{2}{5}}}\).

b) \({9^{\frac{2}{5}}} \cdot {27^{\frac{2}{5}}} = {3^k}\) thì \(k = 3\).

c) \({144^{\frac{3}{4}}}:{9^{\frac{3}{4}}} = {2^k}\)thì \(k = 3\).

d) \(A - B = 1\).

Xem đáp án » 30/05/2025 15

Câu 4:

Cho biểu thức \(\sqrt[5]{{2 \cdot \sqrt[3]{{2 \cdot \sqrt 2 }}}} = {2^{\frac{a}{b}}}\) và \(\sqrt[6]{{3 \cdot \sqrt[3]{{3 \cdot \sqrt 3 }}}} = {3^{\frac{m}{n}}}\) trong đó (\(\frac{a}{b},\frac{m}{n}\) là các phân số tối giản), khi đó:

a) \(a + b = 13\).

b) \(m - n = 3\).

c) \(\frac{a}{b} + \frac{m}{n} = \frac{{11}}{{20}}\).

d) \(\frac{a}{b} - \frac{m}{n} = \frac{1}{{20}}\).

Xem đáp án » 30/05/2025 15

Câu 5:

Cho các biểu thức  \(A = \sqrt {2 \cdot \sqrt[3]{{2 \cdot \sqrt[4]{2}}}} ,\,B = \sqrt[{24}]{{{2^5}}} \cdot \frac{1}{{\sqrt {{2^{ - 1}}} }}\). Vậy:

a) \(A = {2^{\frac{a}{b}}}\)(\(\frac{a}{b}\) là phân số tối giản), khi đó: \(a + b = 41\).

b) \(B = {2^{\frac{a}{b}}}\)(\(\frac{a}{b}\) là phân số tối giản), khi đó: \(a + b = 31\).

c) \(A - B\sqrt 5  = \sqrt 5 \).

d) \(A.B = {2^{\frac{m}{n}}}\)(\(\frac{m}{n}\) là phân số tối giản), khi đó: \(m + n = 29\).

Xem đáp án » 30/05/2025 15

Câu 6:

Cho \[a > 0,m,n \in \mathbb{Z},n \ge 2\]. Chọn kết luận đúng: 

Xem đáp án » 30/05/2025 14
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay