Câu hỏi:
04/06/2025 47
Dùng định nghĩa để tính đạo hàm của hàm số \(f(x) = \frac{{x - 2}}{{x + 1}}\) tại điểm \({x_0} = 0\) ta được \(f'\left( 0 \right) = a\). Khi đó:
a) \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f(\left( x \right) - f\left( 0 \right)}}{{x - 0}}\).
b) \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{4}{{x + 1}}\).
c) Phương trình \({3^x} = 3\) có nghiệm bằng \(x = a - 2\).
d) \({\log _a}9 = 3\).
Dùng định nghĩa để tính đạo hàm của hàm số \(f(x) = \frac{{x - 2}}{{x + 1}}\) tại điểm \({x_0} = 0\) ta được \(f'\left( 0 \right) = a\). Khi đó:
a) \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f(\left( x \right) - f\left( 0 \right)}}{{x - 0}}\).
b) \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{4}{{x + 1}}\).
c) Phương trình \({3^x} = 3\) có nghiệm bằng \(x = a - 2\).
d) \({\log _a}9 = 3\).
Quảng cáo
Trả lời:
a) b) Ta có: \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{x - 2}}{{x + 1}} - \left( { - 2} \right)}}{x}\)\( = \mathop {\lim }\limits_{x \to 0} \frac{{3x}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{3}{{x + 1}} = 3\).
Vậy \(f'\left( 0 \right) = 3\).
c) Ta có 3x = 3Û x = 1 = 3 – 2.
d) log39 = 2.
a) Đúng; b) Sai; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
D
\(y' = 3{x^2} - 3\)
Ta có \(y\left( 2 \right) = 2\) và \(y'\left( 2 \right) = 9\).
Do đó phương trình tiếp tuyến cần tìm là: \(y = 9\left( {x - 2} \right) + 2 \Leftrightarrow y = 9x - 16\).
Lời giải
Ta có\[\]\[f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\]
\( = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)(x + 3)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 3) = 4\).
Vậy \(f'\left( 1 \right) = 4\).
a) Đúng; b) Đúng; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\) bằng \(6\).
b) Phương trình tiếp tuyến của \((C)\) tại \(M\) đi qua điểm \(A\left( {0;4} \right)\).
c) Phương trình tiếp tuyến của \((C)\) tại \(M\) cắt đường thẳng \(d:y = 3x\) tại điểm có hoành độ bằng 4.
d) Phương trình tiếp tuyến của \((C)\) tại \(M\) vuông góc với đường thẳng \(\Delta :y = - \frac{1}{6}x\).
a) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\) bằng \(6\).
b) Phương trình tiếp tuyến của \((C)\) tại \(M\) đi qua điểm \(A\left( {0;4} \right)\).
c) Phương trình tiếp tuyến của \((C)\) tại \(M\) cắt đường thẳng \(d:y = 3x\) tại điểm có hoành độ bằng 4.
d) Phương trình tiếp tuyến của \((C)\) tại \(M\) vuông góc với đường thẳng \(\Delta :y = - \frac{1}{6}x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.