Câu hỏi:

04/06/2025 47

Dùng định nghĩa để tính đạo hàm của hàm số \(f(x) = \frac{{x - 2}}{{x + 1}}\) tại điểm \({x_0} = 0\) ta được \(f'\left( 0 \right) = a\). Khi đó:

a) \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f(\left( x \right) - f\left( 0 \right)}}{{x - 0}}\).

b) \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{4}{{x + 1}}\).

c) Phương trình \({3^x} = 3\) có nghiệm bằng \(x = a - 2\).

d) \({\log _a}9 = 3\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) b) Ta có: \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{x - 2}}{{x + 1}} - \left( { - 2} \right)}}{x}\)\( = \mathop {\lim }\limits_{x \to 0} \frac{{3x}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{3}{{x + 1}} = 3\).

Vậy \(f'\left( 0 \right) = 3\).

c) Ta có 3x = 3Û x = 1 = 3 – 2.

d) log39 = 2.

a) Đúng;   b) Sai; c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

\(y' = 3{x^2} - 3\)

Ta có \(y\left( 2 \right) = 2\)\(y'\left( 2 \right) = 9\).

Do đó phương trình tiếp tuyến cần tìm là: \(y = 9\left( {x - 2} \right) + 2 \Leftrightarrow y = 9x - 16\).

Lời giải

Ta có\[\]\[f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\]

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)(x + 3)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 3) = 4\).

Vậy \(f'\left( 1 \right) = 4\).

a) Đúng;   b) Đúng; c) Sai;   d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP