Câu hỏi:

05/06/2025 24

Một chất điểm chuyển động có quãng đường được cho bởi phương trình \(s\left( t \right) = \frac{1}{6}{t^4} - \frac{2}{3}{t^3} + 3{t^2} - 1\), trong đó t là thời gian tính bằng giây, s tính bằng mét. Tính vận tốc chuyển động của chất điểm tại thời điểm chất điểm có gia tốc chuyển động nhỏ nhất (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(v\left( t \right) = s'\left( t \right) = \frac{2}{3}{t^3} - 2{t^2} + 6t\); a(t) = v'(t) = 2t2 – 4t + 6.

Þ a(t) = 2(t2 – 2t + 1) + 4 = 2(t – 1)2 + 4 ≥ 4.

Dấu “=” xảy khi khi t = 1.

Suy ra gia tốc chuyển động của chất điểm có giá trị nhỏ nhất là 4 khi t = 1 s, khi đó vận tốc chuyển động của chất điểm là \(v\left( 1 \right) = \frac{{14}}{3} \approx 4,67\) (m/s).

Trả lời: 4,67.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Một chất điểm chuyển động có phương trình s = −t3 + t2 + t + 4 (t là thời gian tính bằng giây). Gia tốc của chuyển động tại thời điểm vận tốc đạt giá trị lớn nhất là  

Lời giải

B

Ta có v(t) = s'(t) = −3t2 + 2t + 1; a(t) = v'(t) = −6t + 2.

Ta có v(t) = −3t2 + 2t + 1 = \( - 3{\left( {t - \frac{1}{3}} \right)^2} + \frac{4}{3} \le \frac{4}{3}\).

Vận tốc đạt giá trị lớn nhất khi \(t = \frac{1}{3}\).

Do đó \(a\left( {\frac{1}{3}} \right) = - 6.\frac{1}{3} + 2 = 0\).

Câu 2

Cho \(y = \sqrt {2x - {x^2}} \), tính giá trị biểu thức \(A = {y^3}.y''\).     

Lời giải

C

Ta có: \(y' = \frac{{1 - x}}{{\sqrt {2x - {x^2}} }},\,\,\,y'' = \frac{{ - 1}}{{{{\left( {\sqrt {2x - {x^2}} } \right)}^3}}}\)

Do đó: \(A = {y^3}.y'' = - 1\).

Câu 3

Tính đạo hàm cấp hai của hàm số \(y = - 3\cos x\) tại điểm \({x_0} = \frac{\pi }{2}\).     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số \(f\left( x \right) = \,{\left( {3x - 7} \right)^5}\). Tính \(f''\left( 2 \right)\).     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Cho hàm số \(y = {x^5} - 3{x^4} + x + 1\) với \(x \in \mathbb{R}\). Đạo hàm \(y''\) của hàm số là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay