Câu hỏi:

05/06/2025 16

Cho hàm số \(f\left( x \right) = {e^{x - {x^2}}}\). Biết phương trình f"(x) = 0 có hai nghiệm x1; x2. Tính x1.x2 (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(f'\left( x \right) = \left( {1 - 2x} \right){e^{x - {x^2}}}\); \(f''\left( x \right) = - 2{e^{x - {x^2}}} + {\left( {1 - 2x} \right)^2}{e^{x - {x^2}}} = \left[ { - 2 + {{\left( {1 - 2x} \right)}^2}} \right]{e^{x - {x^2}}}\).

Khi đó f"(x) = 0 \( \Leftrightarrow {\left( {1 - 2x} \right)^2} = 2\)\( \Leftrightarrow \left[ \begin{array}{l}1 - 2x = \sqrt 2 \\1 - 2x = - \sqrt 2 \end{array} \right.\)\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{1 - \sqrt 2 }}{2}\\x = \frac{{1 + \sqrt 2 }}{2}\end{array} \right.\].

Suy ra \({x_1}{x_2} = - \frac{1}{4} = - 0,25 \approx - 0,3\).

Trả lời: −0,3.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Một chất điểm chuyển động có phương trình s = −t3 + t2 + t + 4 (t là thời gian tính bằng giây). Gia tốc của chuyển động tại thời điểm vận tốc đạt giá trị lớn nhất là  

Lời giải

B

Ta có v(t) = s'(t) = −3t2 + 2t + 1; a(t) = v'(t) = −6t + 2.

Ta có v(t) = −3t2 + 2t + 1 = \( - 3{\left( {t - \frac{1}{3}} \right)^2} + \frac{4}{3} \le \frac{4}{3}\).

Vận tốc đạt giá trị lớn nhất khi \(t = \frac{1}{3}\).

Do đó \(a\left( {\frac{1}{3}} \right) = - 6.\frac{1}{3} + 2 = 0\).

Câu 2

Cho \(y = \sqrt {2x - {x^2}} \), tính giá trị biểu thức \(A = {y^3}.y''\).     

Lời giải

C

Ta có: \(y' = \frac{{1 - x}}{{\sqrt {2x - {x^2}} }},\,\,\,y'' = \frac{{ - 1}}{{{{\left( {\sqrt {2x - {x^2}} } \right)}^3}}}\)

Do đó: \(A = {y^3}.y'' = - 1\).

Câu 3

Cho hàm số \(f\left( x \right) = \,{\left( {3x - 7} \right)^5}\). Tính \(f''\left( 2 \right)\).     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tính đạo hàm cấp hai của hàm số \(y = - 3\cos x\) tại điểm \({x_0} = \frac{\pi }{2}\).     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Cho hàm số \(y = {x^5} - 3{x^4} + x + 1\) với \(x \in \mathbb{R}\). Đạo hàm \(y''\) của hàm số là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Một chất điểm dao động điều hòa theo phương trình \(S = 3\cos \left( {2\pi t + \frac{\pi }{3}} \right)\) (cm). Tính gia tốc tức thời của chất điểm tại thời điểm t = 2s. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay