Câu hỏi:

18/06/2025 44 Lưu

Cho hình bình hành \(ABCD\) và một điểm \(S\) không thuộc mặt phẳng \((ABCD)\), các điểm \(M,N\) lần lượt là trung điểm của đoạn thẳng \(AB,SC\). Gọi \(O = AC \cap BD\).

a) \(SO\) giao tuyến của hai mặt phẳng \((SAC)\)\((SBD)\).

b) Giao điểm của \(I\) của đường thẳng \(AN\) và mặt phẳng \((SBD)\) là điểm nằm trên đường thẳng \(SO\).

c) Giao điểm của \(J\) của đường thẳng \(MN\) và mặt phẳng \((SBD)\) là điểm nằm trên đường thẳng \(SD\).

d) Ba điểm \(I,J,B\) thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C (ảnh 1)

a) \(SO\) giao tuyến của hai mặt phẳng \((SAC)\) và \((SBD)\).

b) Trong mặt phẳng \((ABCD)\), gọi \(O = AC \cap BD\);

Trong mặt phẳng \((SAC)\), gọi \(I = SO \cap AN\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN}\\{I \in SO,SO \subset (SBD)}\end{array} \Rightarrow I = AN \cap (SBD)} \right.\).

c) Trong mặt phẳng \((ABCD)\), gọi \(P = CM \cap BD\);

Trong mặt phẳng \((SCM)\), gọi \(J = MN \cap SP\);

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN}\\{J \in SP,SP \subset (SBD)}\end{array} \Rightarrow J = MN \cap (SBD)} \right.\).

d) Dễ thấy \(B \in (ABN) \cap (SBD)\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN,AN \subset (ABN)}\\{I \in SO,SO \subset (SBD)}\end{array} \Rightarrow I \in (ABN) \cap (SBD)} \right.\).(2)

Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN,MN \subset (ABN)}\\{J \in SP,SP \subset (SBD)}\end{array} \Rightarrow J \in (ABN) \cap (SBD)} \right.\).(3)

Từ (1), (2), (3) suy ra \(B,I,J\) cùng thuộc giao tuyến của hai mặt phẳng \((ABN)\) và \((SBD)\) nên ba điểm này thẳng hàng.

Đáp án: a) Đúng; b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

C (ảnh 1)

a) Ta có: \(I \in AD,AD \subset (JAD) \Rightarrow I \in (JAD) \Rightarrow IJ \subset (JAD)\);

\(J \in BC,BC \subset (IBC) \Rightarrow J \in (IBC) \Rightarrow IJ \subset (IBC)\). Vậy \((IBC) \cap (JAD) = IJ\).

b) \(ND\) là giao tuyến của hai mặt phẳng \((MND),(ADC)\).

c) \(BI\) là giao tuyến của hai mặt phẳng \((BCI),(ABD)\).

d) Gọi \(E = DN \cap CI(\) trong \(mp(ACD))\) và \(F = DM \cap BI(\) trong \(mp(ABD))\).

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{E \in DN,DN \subset (DMN)}\\{E \in IC,IC \subset (IBC)}\end{array}} \right.\\ \Rightarrow E \in (DMN) \cap (IBC).(1)\end{array}\)

Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{F \in DM,DM \subset (DMN)}\\{F \in BI,BI \subset (IBC)}\end{array} \Rightarrow F \in (DMN) \cap (IBC)} \right.\).

Từ (1) và \((2)\) suy ra \((DMN) \cap (IBC) = EF\).

Khi đó \[EF\] cắt \[IJ\]

Đáp án: a) Đúng; b) Đúng;   c) Đúng;   d) Sai.

Câu 2

Lời giải

B

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là (ảnh 1)

Có S Î (SMN) Ç (SAC).

Gọi O là tâm của hình bình hành ABCD khi đó O = AC Ç MN.

Suy ra \(\left\{ \begin{array}{l}O \in MN \subset \left( {SMN} \right)\\O \in AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow O \in \left( {SMN} \right) \cap \left( {SAC} \right)\).

Vậy (SMN) Ç (SAC) = SO với O là tâm của hình bình hành ABCD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP