Câu hỏi:
18/06/2025 11Cho hình bình hành \(ABCD\) và một điểm \(S\) không thuộc mặt phẳng \((ABCD)\), các điểm \(M,N\) lần lượt là trung điểm của đoạn thẳng \(AB,SC\). Gọi \(O = AC \cap BD\).
a) \(SO\) giao tuyến của hai mặt phẳng \((SAC)\) và \((SBD)\).
b) Giao điểm của \(I\) của đường thẳng \(AN\) và mặt phẳng \((SBD)\) là điểm nằm trên đường thẳng \(SO\).
c) Giao điểm của \(J\) của đường thẳng \(MN\) và mặt phẳng \((SBD)\) là điểm nằm trên đường thẳng \(SD\).
d) Ba điểm \(I,J,B\) thẳng hàng.
Quảng cáo
Trả lời:
a) \(SO\) giao tuyến của hai mặt phẳng \((SAC)\) và \((SBD)\).
b) Trong mặt phẳng \((ABCD)\), gọi \(O = AC \cap BD\);
Trong mặt phẳng \((SAC)\), gọi \(I = SO \cap AN\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN}\\{I \in SO,SO \subset (SBD)}\end{array} \Rightarrow I = AN \cap (SBD)} \right.\).
c) Trong mặt phẳng \((ABCD)\), gọi \(P = CM \cap BD\);
Trong mặt phẳng \((SCM)\), gọi \(J = MN \cap SP\);
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN}\\{J \in SP,SP \subset (SBD)}\end{array} \Rightarrow J = MN \cap (SBD)} \right.\).
d) Dễ thấy \(B \in (ABN) \cap (SBD)\). (1)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN,AN \subset (ABN)}\\{I \in SO,SO \subset (SBD)}\end{array} \Rightarrow I \in (ABN) \cap (SBD)} \right.\).(2)
Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN,MN \subset (ABN)}\\{J \in SP,SP \subset (SBD)}\end{array} \Rightarrow J \in (ABN) \cap (SBD)} \right.\).(3)
Từ (1), (2), (3) suy ra \(B,I,J\) cùng thuộc giao tuyến của hai mặt phẳng \((ABN)\) và \((SBD)\) nên ba điểm này thẳng hàng.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Có S Î (SMN) Ç (SAC).
Gọi O là tâm của hình bình hành ABCD khi đó O = AC Ç MN.
Suy ra \(\left\{ \begin{array}{l}O \in MN \subset \left( {SMN} \right)\\O \in AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow O \in \left( {SMN} \right) \cap \left( {SAC} \right)\).
Vậy (SMN) Ç (SAC) = SO với O là tâm của hình bình hành ABCD.
Lời giải
Gọi AC Ç BD = O thì (SAC) Ç (SBD) = SO.
Trong mặt phẳng (SAC), lấy AM Ç SO = I Þ I = AM Ç (SBD).
Do trong DSAC, AM và SO là hai đường trung tuyến nên I là trọng tâm DSAC.
Vậy IA = 2IM hay \(\frac{{IA}}{{IM}} = 2\).
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án