PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hình chóp S.ABCD, có đáy ABCD là một hình bình hành tâm O. Gọi I, K lần lượt là trung điểm của SB và SD.
a) SO là giao tuyến của (SAC) và (SBD).
b) Giao điểm J của SA với (CKB) thuộc đường thẳng đi qua K và song song với DC.
c) Giao tuyến của (OIA) và (SCD) là đường thẳng đi qua C và song song với SD.
d) CD // IJ.
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hình chóp S.ABCD, có đáy ABCD là một hình bình hành tâm O. Gọi I, K lần lượt là trung điểm của SB và SD.
a) SO là giao tuyến của (SAC) và (SBD).
b) Giao điểm J của SA với (CKB) thuộc đường thẳng đi qua K và song song với DC.
c) Giao tuyến của (OIA) và (SCD) là đường thẳng đi qua C và song song với SD.
d) CD // IJ.
Quảng cáo
Trả lời:
a) S là điểm chung của hai mặt phẳng (SAC) và (SBD).
Có O Î AC Ì (SAC), O Î BD Ì (SBD). Do đó O là điểm chung của hai mặt phẳng (SAC) và (SBD).
Do đó SO là giao tuyến của (SAC) và (SBD).
b) Có \(\left\{ \begin{array}{l}K = \left( {SAD} \right) \cap \left( {KBC} \right)\\AD \subset \left( {SAD} \right),BC \subset \left( {KBC} \right)\\AD//BC\end{array} \right.\) nên giao tuyến của hai mặt phẳng này là đường thẳng qua K và song song với AD cắt SA tại J.
Suy ra J là giao điểm của SA và (KBC).
c) Có \(OI\) là đường trung bình của \(\Delta SBD \Rightarrow OI//SD\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{OI//SD}\\{OI \subset (OIA)}\\{SD \subset (SCD)}\\{C \in (OIA) \cap (SCD)}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{Cy = (OIA) \cap (SCD)}\\{Cy//SD//OI}\end{array}} \right.} \right.\).
d) Ta có:
\(IJ//AB\) (\(IJ\) là đường trung bình của \(\Delta SAB\))
\(AB//CD\) (tứ giác \(ABCD\) là hình bình hành) \( \Rightarrow CD//IJ\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Ta có M, Q lần lượt là trung điểm của AC, CD
Þ MQ là đường trung bình của tam giác CAD.
Þ MQ // AD (1).
Ta có R, T lần lượt là trung điểm của SA, SD.
Þ RT là đường trung bình của tam giác SAD.
Þ RT // AD (2).
Từ (1) và (2), suy ra MQ // RT.
Lời giải
A
Ta có \(\left\{ \begin{array}{l}P \in SA \subset \left( {SAB} \right)\\P \in \left( {MNP} \right)\end{array} \right.\) Þ PÎ (SAB) Ç (MNP).
Mà MN // AB nên giao tuyến của (SAB) và (MNP) là đường thẳng qua P và song song với AB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.