Câu hỏi:

19/08/2025 100 Lưu

Cho n lẻ. Chứng minh A = n2004 + 1 không phải là số chính phương

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Giả sử n2004 + 1 là số chính phương với n là số lẻ, ta có:

n2004 + 1 = a2 (a Î*)

Suy ra a2\({\left( {{n^{1002}}} \right)^2}\)= 1

Suy ra (a – n1002)(a + n1002) = 1

Suy ra 1 \(\cancel{ \vdots }\) (a + n1002)

Suy ra (a + n1002) = 1 là vô lí vì (a + n1002) > 2 với n là số lẻ

Vậy n2004 + 1 không là số chính phương với n là số lẻ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cho hình thang vuông abcd có đáy lớn ab=8a,đáy nhỏ cd=4a.  (ảnh 1)

Vì I là trung điểm của AD Þ IA = ID = 3

Xét DIAB vuông tại A

\(\begin{array}{l}\tan \widehat {AIB} = \frac{8}{3} \Rightarrow \widehat {AIB} = 69,44^\circ \Rightarrow \widehat {DIB} = 110,56\\IB = \sqrt {I{A^2} + A{B^2}} = \sqrt {73} \end{array}\)

Ta có: \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {ID} \)

\(\begin{array}{l} = \overrightarrow {IA} .\overrightarrow {ID} + \overrightarrow {IB} .\overrightarrow {ID} \\ = IA.ID.\cos \left( {IA,ID} \right) + IB.ID.\cos (IB,ID)\\ = - 3.3 + \sqrt {73} .3.\cos 110,56^\circ = - 18\end{array}\)

Lời giải

Lời giải:

Số tập con có một phần tử của X là: {4}, {5}

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP