Cho tam giác ABC (AB < AC), đường phân giác AD. Qua trung điểm M của BC, kẻ đường thẳng song song với AD, cắt AC, AB theo thứ tự ở E và K. Gọi O là giao điểm của AM và DK. Chứng minh: AO.OK = DO.OM
Cho tam giác ABC (AB < AC), đường phân giác AD. Qua trung điểm M của BC, kẻ đường thẳng song song với AD, cắt AC, AB theo thứ tự ở E và K. Gọi O là giao điểm của AM và DK. Chứng minh: AO.OK = DO.OM
Quảng cáo
Trả lời:

Xét DOMK và DOAD có:
\(\widehat {OMK} = \widehat {OAD}\) (hai góc so le trong do MK//AD)
\(\widehat {MOK} = \widehat {AOD}\) (hai góc đối đỉnh)
Do đó DOMK đồng dạng với DOAD
Suy ra \(\frac{{OM}}{{OA}} = \frac{{OK}}{{OD}}\). Do đó \(OM.OD = OK.OA\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phân giác AD (giả thiết) nên \(\widehat {BAD} = \widehat {MAD} = \frac{1}{2}.\widehat A = 35^\circ \)
Mà MD // AB suy ra \(\widehat {BAD} = \widehat {ADM}\) (so le trong)
Do đó \(\widehat {ADM} = 35^\circ \)
Vậy \(\widehat {BAD} = 35^\circ ;\,\,\,\widehat {ADM} = 35^\circ \)
Lời giải
Kẻ đường thẳng xy đi qua L và song song với MN
Suy ra Lx // MN mà MN // KJ . Suy ra Lx // KJ
Lx // MN suy ra \(\widehat {MLx} = \widehat {NML} = 46^\circ \) (so le trong)
Lx // KJ suy ra \(\widehat {xLK} + \overrightarrow {JKL} = 180^\circ \) (trong cùng phía)
Suy ra \(\widehat {xLK} = 180^\circ - \widehat {JKL} = 180^\circ - 127^\circ = 53^\circ \)
\(\widehat {MLK} = \widehat {MLx} + \widehat {xLK} = 46^\circ + 53^\circ = 99^\circ \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.