Cho x, y là các số hữu tỉ và thỏa mãn đẳng thức x3 + y3 = 2xy. Chứng minh rằng: \(\sqrt {1 - xy} \) là một số hữu tỉ.
Quảng cáo
Trả lời:

Lời giải:
Ta có: x3 + y3 = 2xy
Bình phương 2 vế ta được: (x3 + y3)2 = 2xy
Suy ra x6 + y6 + 2x3y3 = 4x2y2
Suy ra x6 + y6 - 2x3y3 = 4x2y2 – 4x3y3
Suy ra (x3 - y3)2 = 4x2y2(1 – xy)
Suy ra 1 - xy = \(\frac{{{{\left( {{x^3} - {y^3}} \right)}^2}}}{{4{x^2}{y^2}}} = {\left( {\frac{{{x^3} - {y^3}}}{{2xy}}} \right)^2}\)
Do đó\(\sqrt {1 - xy} = \left| {\frac{{{x^3} - {y^3}}}{{2xy}}} \right|\) là một số hữu tỉ.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phân giác AD (giả thiết) nên \(\widehat {BAD} = \widehat {MAD} = \frac{1}{2}.\widehat A = 35^\circ \)
Mà MD // AB suy ra \(\widehat {BAD} = \widehat {ADM}\) (so le trong)
Do đó \(\widehat {ADM} = 35^\circ \)
Vậy \(\widehat {BAD} = 35^\circ ;\,\,\,\widehat {ADM} = 35^\circ \)
Lời giải
Kẻ đường thẳng xy đi qua L và song song với MN
Suy ra Lx // MN mà MN // KJ . Suy ra Lx // KJ
Lx // MN suy ra \(\widehat {MLx} = \widehat {NML} = 46^\circ \) (so le trong)
Lx // KJ suy ra \(\widehat {xLK} + \overrightarrow {JKL} = 180^\circ \) (trong cùng phía)
Suy ra \(\widehat {xLK} = 180^\circ - \widehat {JKL} = 180^\circ - 127^\circ = 53^\circ \)
\(\widehat {MLK} = \widehat {MLx} + \widehat {xLK} = 46^\circ + 53^\circ = 99^\circ \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.