Cho x, y là các số hữu tỉ và thỏa mãn đẳng thức x3 + y3 = 2xy. Chứng minh rằng: \(\sqrt {1 - xy} \) là một số hữu tỉ.
Quảng cáo
Trả lời:
Lời giải:
Ta có: x3 + y3 = 2xy
Bình phương 2 vế ta được: (x3 + y3)2 = 2xy
Suy ra x6 + y6 + 2x3y3 = 4x2y2
Suy ra x6 + y6 - 2x3y3 = 4x2y2 – 4x3y3
Suy ra (x3 - y3)2 = 4x2y2(1 – xy)
Suy ra 1 - xy = \(\frac{{{{\left( {{x^3} - {y^3}} \right)}^2}}}{{4{x^2}{y^2}}} = {\left( {\frac{{{x^3} - {y^3}}}{{2xy}}} \right)^2}\)
Do đó\(\sqrt {1 - xy} = \left| {\frac{{{x^3} - {y^3}}}{{2xy}}} \right|\) là một số hữu tỉ.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì I là trung điểm của AD Þ IA = ID = 3
Xét DIAB vuông tại A
\(\begin{array}{l}\tan \widehat {AIB} = \frac{8}{3} \Rightarrow \widehat {AIB} = 69,44^\circ \Rightarrow \widehat {DIB} = 110,56\\IB = \sqrt {I{A^2} + A{B^2}} = \sqrt {73} \end{array}\)
Ta có: \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {ID} \)
\(\begin{array}{l} = \overrightarrow {IA} .\overrightarrow {ID} + \overrightarrow {IB} .\overrightarrow {ID} \\ = IA.ID.\cos \left( {IA,ID} \right) + IB.ID.\cos (IB,ID)\\ = - 3.3 + \sqrt {73} .3.\cos 110,56^\circ = - 18\end{array}\)
Lời giải
Lời giải:
Số tập con có một phần tử của X là: {4}, {5}
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
