Câu hỏi:
18/06/2025 25Quảng cáo
Trả lời:
Lời giải:
Để \(\frac{{5t + 2}}{{17}}\) là một số nguyên thì 5t + 2 \( \vdots \) 17.
Nên 5t + 2 Î B{17} = {0; 17; 34; 51; 68; 85; 102;..}
Suy ra 5t = {-2; 15; 32; 49; 66; 83; 100;...}
Suy ra \(t = \left\{ {\frac{{ - 2}}{5};3;\frac{{32}}{5};\frac{{49}}{5};\frac{{66}}{5};\frac{{83}}{5};20;...} \right\}\)
Mà t Î \(\mathbb{Z}\) nên t Î {3; 20;...}
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phân giác AD (giả thiết) nên \(\widehat {BAD} = \widehat {MAD} = \frac{1}{2}.\widehat A = 35^\circ \)
Mà MD // AB suy ra \(\widehat {BAD} = \widehat {ADM}\) (so le trong)
Do đó \(\widehat {ADM} = 35^\circ \)
Vậy \(\widehat {BAD} = 35^\circ ;\,\,\,\widehat {ADM} = 35^\circ \)
Lời giải
Kẻ đường thẳng xy đi qua L và song song với MN
Suy ra Lx // MN mà MN // KJ . Suy ra Lx // KJ
Lx // MN suy ra \(\widehat {MLx} = \widehat {NML} = 46^\circ \) (so le trong)
Lx // KJ suy ra \(\widehat {xLK} + \overrightarrow {JKL} = 180^\circ \) (trong cùng phía)
Suy ra \(\widehat {xLK} = 180^\circ - \widehat {JKL} = 180^\circ - 127^\circ = 53^\circ \)
\(\widehat {MLK} = \widehat {MLx} + \widehat {xLK} = 46^\circ + 53^\circ = 99^\circ \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.