Câu hỏi:
19/06/2025 7Một chiếc điện thoại iphone được đặt trên một giá đỡ có ba chân với điểm đặt S(0; 0; 20) và các điểm chạm mặt đất của ba chân lần lượt là A(0; ‒6; 0), \[B\left( {3\sqrt 3 \,;\,\,3\,;\,\,0} \right)\,;\,\,C\left( { - 3\sqrt 3 \,;\,\,3\,;\,\,0} \right)\] (đơn vị cm). Cho biết điện thoại có trọng lượng là 2N và ba lực tác dụng lên giá đỡ được phân bố như hình vẽ là ba lực \[\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \] có độ lớn bằng nhau. Biết tọa độ của lực \[\overrightarrow {{F_1}} = \left( {a\,;\,\,b\,;\,\,c} \right)\]. Khi đó T = 2a + 5b + 6c bằng bao nhiêu?
Quảng cáo
Trả lời:
Lời giải:
Vì chiếc máy cân bằng nên trọng lực của máy sẽ phân bố đều trên các chân của giá đỡ. Từ tọa độ các điểm đã cho, ta tìm được mối liên hệ với vecto lực và tìm được tọa độ các vecto lực.
Tổng hợp lực: \[\overrightarrow P + \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \]
\[\overrightarrow {SA} \left( {0\,;\,\, - 6\,;\,\, - 20} \right)\,;\,\,\overrightarrow {SB} \left( {3\sqrt 3 \,;\,\,3\,;\,\, - 20} \right)\,;\,\,\overrightarrow {SC} \left( { - 3\sqrt 3 \,;\,\,3\,;\,\, - 20} \right)\]
Suy ra \[SA = SB = SC = 2\sqrt {109} \] và \[\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \left( {0,0, - 60} \right)\]
Do các lực \[\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \] cùng phương với các giá đỡ và có độ lớn bằng nhau nên:
\[\frac{{\left| {\overrightarrow {{F_1}} } \right|}}{{SA}} = \frac{{\left| {\overrightarrow {{F_2}} } \right|}}{{SB}} = \frac{{\left| {\overrightarrow {{F_3}} } \right|}}{{SC}} = k\].
Suy ra \[\overrightarrow {{F_1}} = k\overrightarrow {SA} \,;\,\,\overrightarrow {{F_2}} = k\overrightarrow {SB} \,;\,\,\overrightarrow {{F_3}} = k\overrightarrow {SC} \].
Suy ra \[\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = k\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right) = k\left( {0\,;\,\,0\,;\,\, - 20} \right)\].
Suy ra \[\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \left( {0\,;\,\,0\,;\,\, - 60k} \right)\]
\[P = 60k = 2\]
\[k = \frac{1}{{30}}\]
\[\overrightarrow {{F_1}} = \left( {0\,;\,\, - \frac{1}{5}\,;\,\, - \frac{2}{3}} \right)\]
Do đó T = 2a + 5b + 6c = ‒5.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Đổi từ m/s sang km/h:
• Tỷ lệ chuyển đổi: 1 m/s = 3,6 km/h
• Để đổi từ m/s sang km/h, ta nhân tốc độ ban đầu (m/s) cho 3,6.
Lời giải
Giá trị lượng giác của một góc từ 0 độ đến 180 độ là:
Góc |
0° |
30° |
45° |
60° |
90° |
180° |
Sin |
0 |
\(\frac{1}{2}\) |
\(\frac{{\sqrt 2 }}{2}\) |
\(\frac{{\sqrt 3 }}{2}\) |
1 |
0 |
Cos |
1 |
\(\frac{{\sqrt 3 }}{2}\) |
\(\frac{{\sqrt 2 }}{2}\) |
\(\frac{1}{2}\) |
0 |
−1 |
Tan |
0 |
\(\frac{1}{{\sqrt 3 }}\) |
1 |
\(\sqrt 3 \) |
∥ |
0 |
Cot |
∥ |
\(\sqrt 3 \) |
1 |
\(\frac{1}{{\sqrt 3 }}\) |
0 |
∥ |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)