Câu hỏi:

19/06/2025 33

Cho \[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\] với \(x \ne 1.\)

a) Rút gọn biểu thức \(P.\)

b) Tính giá trị của biểu thức \(P\) tại \(x = 2.\)

c) Chứng minh \(P > 0\) với \(x > 0\,;\,\,x \ne 1.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Với \(x \ne 1\), ta có:

\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\]

\[ = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]

\( = \frac{{{x^2} + x + 1 + x\left( {x - 1} \right) - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^2} + x + 1 + {x^2} - x - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2{x^2} - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{2x\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2x}}{{{x^2} + x + 1}}\).

b) Với \(x = 2\) (thỏa mãn) thay vào biểu thức \(P\), ta được: \(P = \frac{{2 \cdot 2}}{{{2^2} + 2 + 1}} = \frac{4}{7}.\)

Vậy với \(x = 2\) thì \(P = \frac{4}{7}.\)

c) Với \(x > 0,x \ne 1\) ta có:

\(2x > 0;\)

\({x^2} + x + 1 = {x^2} + x + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0.\)

Do đó \(P = \frac{{2x}}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Xét \(\Delta ABC\) vuông tại \[A\], theo định lý Pythagore, ta có:

\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {12^2} = 25 + 144 = 169.\)

Suy ra \[BC = 13\,\,{\rm{m}}{\rm{.}}\]

Vậy con chim bay được một đoạn bằng \[13\,\,{\rm{m}}\] thì bắt được con cá.

Câu 2

Lời giải

Đáp án đúng là: B

Ta có: \({x^3} - 27 = {x^3} - {3^3} = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right)\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tứ giác \(ABCD\). Khẳng định nào sau đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP