Câu hỏi:

19/08/2025 152 Lưu

Cho \[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\] với \(x \ne 1.\)

a) Rút gọn biểu thức \(P.\)

b) Tính giá trị của biểu thức \(P\) tại \(x = 2.\)

c) Chứng minh \(P > 0\) với \(x > 0\,;\,\,x \ne 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Với \(x \ne 1\), ta có:

\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\]

\[ = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]

\( = \frac{{{x^2} + x + 1 + x\left( {x - 1} \right) - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^2} + x + 1 + {x^2} - x - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2{x^2} - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{2x\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2x}}{{{x^2} + x + 1}}\).

b) Với \(x = 2\) (thỏa mãn) thay vào biểu thức \(P\), ta được: \(P = \frac{{2 \cdot 2}}{{{2^2} + 2 + 1}} = \frac{4}{7}.\)

Vậy với \(x = 2\) thì \(P = \frac{4}{7}.\)

c) Với \(x > 0,x \ne 1\) ta có:

\(2x > 0;\)

\({x^2} + x + 1 = {x^2} + x + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0.\)

Do đó \(P = \frac{{2x}}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({x^2} + 16\);     
B. \({x^2} + 8x + 16\); 
C. \({x^2} - 4x\);        
D. \({x^2}\).

Lời giải

Đáp án đúng là: D

Ta có: \({\left( {x + 2} \right)^2} - 4\left( {x + 2} \right) + 4 = {\left( {x + 2 - 2} \right)^2} = {x^2}.\)

Lời giải

) Do \(AC\) là tia phân giác \(\widehat {BAD}\) nên ta có \(\widehat {BAD} = 2\widehat {DAC} = 2 \cdot 40^\circ  = 80^\circ \)

Xét tứ giác \(ABCD\) có: \[\widehat {BAD} + \widehat {B\,} + \widehat {BCD} + \widehat {D\,} = 360^\circ \]

Suy ra \[\widehat {BCD} = 360^\circ  - \left( {\widehat {BAD} + \widehat {B\,} + \widehat {D\,}} \right) = 360^\circ  - \left( {80^\circ  + 90^\circ  + 90^\circ } \right) = 100^\circ \].

b) Xét \(\Delta ABC\) vuông tại \(B\), theo định lí Pythagore ta có:

\(A{C^2} = A{B^2} + B{C^2} = {7,66^2} + {6,43^2} = 100,0205\)

Suy ra \(AC = \sqrt {100,0205}  \approx 10,0\) m.

Khi đó vận động viên cần bơi với vận tốc là \(\frac{{10,0}}{{20}} = 0,5\) (m/s).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(7xy\left( {2x - 3y + 4xy} \right)\);        

B. \(xy\left( {14x - 21y + 28xy} \right)\);

C. \(7{x^2}y\left( {2 - 3y + 4xy} \right)\);     
D. \(7x{y^2}\left( {2x - 3y + 4x} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(3{x^4}\);        
B. \( - 3{x^4}\);         
C. \( - 2{x^3}y\);        
D. \(2x{y^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tứ giác \(ABCD\). Khẳng định nào sau đây là sai?

A. \(AB\) và \(BC\) là hai cạnh kề nhau;         

  B. \(BC\) và \(AD\) là hai cạnh đối nhau;

C. \(\widehat A\) và \(\widehat B\) là hai góc đối nhau;                        
D. \(AC\) và \(BD\) là hai đường chéo.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP