Cho hai đa thức:
\(A = {x^2}y + 5xy - 1\) và \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\).
a) Đa thức \(A\) có bậc là 2.
b) Đa thức \(B\) không chia hết cho 6.
c) Với \(x = \frac{1}{2};\) \(y = 4\) thì \(B = - 6\).
d) Tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 6.
Cho hai đa thức:
\(A = {x^2}y + 5xy - 1\) và \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\).
a) Đa thức \(A\) có bậc là 2.
b) Đa thức \(B\) không chia hết cho 6.
c) Với \(x = \frac{1}{2};\) \(y = 4\) thì \(B = - 6\).
d) Tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 6.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án: a) S. b) S. c) Đ. d) S.
⦁ Đa thức \(A\) có bậc là 3. Do đó ý a) sai.
⦁ Ta có \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\)
\[ = 3y \cdot 3y - 3y \cdot x - 2{x^2}{y^2}:\left( {\frac{2}{3}xy} \right) - 6x{y^3}:\left( {\frac{2}{3}xy} \right) + 4xy:\left( {\frac{2}{3}xy} \right)\]
\[ = 9{y^2} - 3xy - 3xy - 9{y^2} + 6\]
\[ = \left( {9{y^2} - 9{y^2}} \right) + \left( { - 3xy - 3xy} \right) + 6\]
\[ = - 6xy + 6 = 6\left( { - xy + 1} \right).\]
Vì \(6\left( { - xy + 1} \right)\, \vdots \,\,6\) với mọi giá trị nguyên của \(x,y\) nên \(B\) luôn chia hết cho 6 với mọi giá trị nguyên của biến \(x,y.\) Do đó ý b) sai.
⦁ Thay \(x = \frac{1}{2};\) \(y = 4\) vào biểu thức \(A = - 6xy + 6\) đã thu gọn được ở câu a, ta được:
\(A = - 6 \cdot \frac{1}{2} \cdot 4 + 6 = - 12 + 6 = - 6.\)
Vậy \(A = - 6\) khi \(x = \frac{1}{2};\) \(y = 4.\) Do đó ý c) sai.
⦁ Tổng của hai đa thức \(A\) và \(B\) là:
\[A + B = \left( {{x^2}y + 5xy - 1} \right) + \left( { - 6xy + 6} \right)\]
\[ = {x^2}y + 5xy - 1 - 6xy + 6\]
\[ = {x^2}y + \left( {5xy - 6xy} \right) + \left( {6 - 1} \right)\]
\[ = {x^2}y - xy + 5.\]
Như vậy, tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 5. Do đó ý d) sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\] với \(x \ne 1.\)
a) Với \(x \ne 1\) ta có:
\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\]
\[ = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
\( = \frac{{{x^2} + x + 1 + x\left( {x - 1} \right) - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{{x^2} + x + 1 + {x^2} - x - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{2{x^2} - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{2x\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{2x}}{{{x^2} + x + 1}}\).
Vậy với \(x \ne 1\) thì \(P = \frac{{2x}}{{{x^2} + x + 1}}.\)
b) Với \(x = 2\) (thỏa mãn) thay vào biểu thức \(P\) ta được: \(P = \frac{{2 \cdot 2}}{{{2^2} + 2 + 1}} = \frac{4}{7}.\)
c) Với \(x > 0,x \ne 1\) ta có:
⦁ \(2x > 0;\)
⦁ \({x^2} + x + 1 = {x^2} + x + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0.\)
Do đó \(P = \frac{{2x}}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\) với mọi \(x > 0,x \ne 1\).
Câu 2
Lời giải
Đáp án đúng là: A
Ta có: \({\left( {x - 5} \right)^2} - {\left( {x + 5} \right)^2} = \left( {x - 5 + x + 5} \right)\left( {x - 5 - x - 5} \right) = 2x \cdot \left( { - 10} \right) = - 20x\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

