Câu hỏi:

19/08/2025 479 Lưu

Một khối bê tông có dạng như hình vẽ bên. Phần đáy của bê tông có dạng hình hộp chữ nhật, đáy là hình vuông có cạnh 40 cm, chiều cao 25 m. Phần trên của khối bê tông có dạng hình chóp tứ giác đều, chiều cao 100 cm. Tính thể tích của khối bê tông đó (làm tròn kết quả đến hàng đơn vị với đơn vị \[{\rm{c}}{{\rm{m}}^{\rm{3}}}).\]

Một khối bê tông có dạng như hình vẽ bên. Phần đáy của bê tông có dạng hình hộp chữ nhật, đáy là hình vuông có cạnh 40 cm, chiều cao 25 m. Phần trên của khối bê tông có dạng hình chóp tứ giác đều, chiều cao 100 cm. Tính thể tích của khối bê tông đó (làm tròn kết quả đến hàng đơn vị với đơn vị \[{\rm{c}}{{\rm{m}}^{\rm{3}}}).\] (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp số: 93.

Thể tích phần trên khối bê tông có dạng hình chóp tứ giác đều là:

\[{V_1} = \frac{1}{3} \cdot {40^2} \cdot 100 = \frac{{160\,\,000}}{3}\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\].

Thể tích phần dưới đáy khối bê tông có dạng hình hộp chữ nhật là:

\({V_2} = 40 \cdot 40 \cdot 25 = 40\,\,000\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\).

Thể tích khối bê tông là:

\(V = {V_1} + {V_2} = \frac{{160\,\,000}}{3} + 40\,\,000 = \frac{{280\,\,000}}{3}\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right) \approx 93\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\] với \(x \ne 1.\)

a) Với \(x \ne 1\) ta có:

\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\]

\[ = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]

\( = \frac{{{x^2} + x + 1 + x\left( {x - 1} \right) - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^2} + x + 1 + {x^2} - x - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2{x^2} - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{2x\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2x}}{{{x^2} + x + 1}}\).

Vậy với \(x \ne 1\) thì \(P = \frac{{2x}}{{{x^2} + x + 1}}.\)

b) Với \(x = 2\) (thỏa mãn) thay vào biểu thức \(P\) ta được: \(P = \frac{{2 \cdot 2}}{{{2^2} + 2 + 1}} = \frac{4}{7}.\)

c) Với \(x > 0,x \ne 1\) ta có:

⦁ \(2x > 0;\)

⦁ \({x^2} + x + 1 = {x^2} + x + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0.\)

Do đó \(P = \frac{{2x}}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\) với mọi \(x > 0,x \ne 1\).

Lời giải

a) Vì góc ngoài tại đỉnh \(K\) của tứ giác \(IKLR\) có số đo là \(100^\circ \) nên \(\widehat {IKL} = 180^\circ  - 100^\circ  = 80^\circ \).

Góc ngoài tại đỉnh \(L\) của tứ giác \(IKLR\) có số đo là \(60^\circ \) nên \(\widehat {KLR} = 180^\circ  - 60^\circ  = 120^\circ \).

Ta có tổng các góc trong tứ giác \(IKLR\) là \(360^\circ \) nên \(\widehat {IKL} + \widehat {KLR} + \widehat {R\,} + \widehat {I\,} = 360^\circ \)

Suy ra \(80^\circ  + 120^\circ  + 90^\circ  + x = 360^\circ \)

Do đó \(x = 70^\circ \).

b) Áp dụng định lý Pythagore vào tam giác vuông \(ABC\) vuông tại \(B\) ta có:

\(A{C^2} = A{B^2} + B{C^2}\) suy ra \(B{C^2} = A{C^2} - A{B^2} = {12^2} - {9^2} = 144 - 81 = 63\)

Suy ra \(BC = \sqrt {63} \) (km).

Chi phí làm đường ống từ \(C\) tới điểm \(B\) của công ty trên bằng tiền VNĐ là:

\(\sqrt {63}  \cdot 5\,\,000 \cdot 24\,\,300 \approx 964\,\,376\,\,352,9\) (VNĐ) \( \approx 964\,\,376\,\,000\) (VNĐ).

Câu 3

A. \( - 20x\)                
B. \(50\)               
C. \(20x\);                 
D. \(2{x^2} + 50\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x{\left( {x - 1} \right)^2}\);        
B. \({x^2}\left( {x - 1} \right)\);       
C. \(x\left( {{x^2} - 1} \right)\);      
D. \(x{\left( {x + 1} \right)^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP