Câu hỏi:

28/06/2025 75 Lưu

Cho các phân số \(\frac{5}{8};{\rm{ }} - \frac{3}{{20}};{\rm{ }}\frac{4}{{11}};{\rm{ }}\frac{{15}}{{22}};{\rm{ }} - \frac{7}{{12}};{\rm{ }}\frac{{14}}{{35}}\). Hỏi có bao nhiêu phân số viết được dưới dạng số thập phân vô hạn tuần hoàn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(3\)

Xét các phân số, ta có:

\(\frac{5}{8} = \frac{5}{{{2^3}}}\) nên \(\frac{5}{8}\) viết được dưới dạng số thập phân hữu hạn.

\( - \frac{3}{{20}} = \frac{{ - 3}}{{{2^2} \cdot 5}}\) nên \( - \frac{3}{{20}}\) viết được dưới dạng số thập phân hữu hạn.

\(\frac{4}{{11}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số là 11.

\(\frac{{15}}{{22}} = \frac{{15}}{{2 \cdot 11}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số có ước là 11 (khác 2 và 5).

\( - \frac{7}{{12}} = \frac{{ - 7}}{{3 \cdot {2^2}}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số có ước khác 2 và 5.

\(\frac{{14}}{{35}} = \frac{2}{5}\) viết được dưới dạng số thập phân hữu hạn.

Do đó, có 3 phân số viết được dưới dạng số thập phân vô hạn tuần hoàn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \(45\)

• Ta có: \(\widehat {aBE} = \widehat {BED} = 60^\circ \) (giả thiết)

Mà hai góc ở vị trí so le trong.

Suy ra \(a\parallel b\).

• Ta có \(\widehat {BCD} + \widehat {BCA} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BCA} = 180^\circ - \widehat {BCD} = 180^\circ - 135^\circ = 45^\circ \).

Vì \(a\parallel b\) nên \(\widehat {BCA} = \widehat {EDC}\) (hai góc đồng vị), do đó \(\widehat {CDE} = 45^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Sb) Đc) Sd) Đ

a) Nhận thấy \(\widehat {xAB}\) và \(\widehat {CAB}\) chỉ là hai góc kề nhau do \(\widehat {xAB} + \widehat {CAB} \ne 180^\circ \). Do đó, ý a) sai.

b) Vì tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên ta có \(\widehat {yAB} = 2\widehat {BAC}\). Do đó, ý b) là đúng.

c) Có \(\widehat {xAB}\) và \(\widehat {yAB}\) là hai góc kề là hai góc kề bù nên ta có \(\widehat {xAB} + \widehat {yAB} = 180^\circ \).

Do đó, \(\widehat {yAB} = 180^\circ - \widehat {xAB} = 180^\circ - 70^\circ = 110^\circ \).

Mà tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên \(\widehat {yAC} = \widehat {CAB} = \frac{{\widehat {yAB}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

Vậy ý c) sai.

d) Ta có: \(\widehat {yAC} = 55^\circ \); \(\widehat {ACB} = 55^\circ \) nên \(\widehat {ACB} = \widehat {yAC}\).

Mà hai góc ở vị trí so le trong nên \(xy\parallel BC\).

Do đó, ý d) đúng.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP