Câu hỏi:

28/06/2025 42 Lưu

B. TỰ LUẬN (3,0 điểm)

(1,0 điểm) Thực hiện phép tính:

a) \(\frac{3}{5}.\frac{7}{9} + \frac{3}{5}.\frac{2}{9};\)b) \({\left( {\frac{1}{2} - \frac{2}{3}} \right)^2} + 1\frac{2}{3}:\left| { - 0,75} \right| - \sqrt {\frac{1}{{16}}} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) \(\frac{3}{5}.\frac{7}{9} + \frac{3}{5}.\frac{2}{9}\)

\( = \frac{3}{5}.\left( {\frac{7}{9} + \frac{2}{9}} \right)\)

\( = \frac{3}{5}.1 = \frac{3}{5}.\)

b) \({\left( {\frac{1}{2} - \frac{2}{3}} \right)^2} + 1\frac{2}{3}:\left| { - 0,75} \right| - \sqrt {\frac{1}{{16}}} \)

\( = {\left( { - \frac{1}{6}} \right)^2} + \frac{5}{3}:0,75 - \frac{1}{4}\)

\( = \frac{1}{{36}} + \frac{5}{3}:\frac{3}{4} - \frac{1}{4}\)

\( = \frac{1}{{36}} + \frac{5}{3}.\frac{4}{3} - \frac{1}{4}\)

\( = \frac{1}{{36}} + \frac{{20}}{9} - \frac{1}{4}\)

\( = \frac{1}{{36}} + \frac{{80}}{{36}} - \frac{9}{{36}} = \frac{{72}}{{36}} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \(45\)

• Ta có: \(\widehat {aBE} = \widehat {BED} = 60^\circ \) (giả thiết)

Mà hai góc ở vị trí so le trong.

Suy ra \(a\parallel b\).

• Ta có \(\widehat {BCD} + \widehat {BCA} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BCA} = 180^\circ - \widehat {BCD} = 180^\circ - 135^\circ = 45^\circ \).

Vì \(a\parallel b\) nên \(\widehat {BCA} = \widehat {EDC}\) (hai góc đồng vị), do đó \(\widehat {CDE} = 45^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Sb) Đc) Sd) Đ

a) Nhận thấy \(\widehat {xAB}\) và \(\widehat {CAB}\) chỉ là hai góc kề nhau do \(\widehat {xAB} + \widehat {CAB} \ne 180^\circ \). Do đó, ý a) sai.

b) Vì tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên ta có \(\widehat {yAB} = 2\widehat {BAC}\). Do đó, ý b) là đúng.

c) Có \(\widehat {xAB}\) và \(\widehat {yAB}\) là hai góc kề là hai góc kề bù nên ta có \(\widehat {xAB} + \widehat {yAB} = 180^\circ \).

Do đó, \(\widehat {yAB} = 180^\circ - \widehat {xAB} = 180^\circ - 70^\circ = 110^\circ \).

Mà tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên \(\widehat {yAC} = \widehat {CAB} = \frac{{\widehat {yAB}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

Vậy ý c) sai.

d) Ta có: \(\widehat {yAC} = 55^\circ \); \(\widehat {ACB} = 55^\circ \) nên \(\widehat {ACB} = \widehat {yAC}\).

Mà hai góc ở vị trí so le trong nên \(xy\parallel BC\).

Do đó, ý d) đúng.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP