(1,5 điểm) Thực hiện phép tính (tính hợp lí nếu có thể):
a) \[245:\left( {{8^2}-15} \right)\].
b) \( - 424 + \left( { - 371} \right) - \left( { - 424} \right) - 29\).
c) \[ - 25.38 + 12.\left( { - 25} \right) - 25.\left( { - 50} \right).\]
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) \[245:\left( {{8^2}-15} \right)\] \( = 245:\left( {64 - 15} \right)\) \( = 245:49\) \( = 5\). |
b) \( - 424 + \left( { - 371} \right) - \left( { - 424} \right) - 29\) \( = \left( { - 424 + 424} \right) + \left[ {\left( { - 371} \right) - 29} \right]\) \( = 0 + \left( { - 400} \right)\) \( = - 400\). |
c) \[ - 25.38 + 12.\left( { - 25} \right) - 25.\left( { - 50} \right)\] \[ = - 25.38 + 12.\left( { - 25} \right) - \left( { - 25} \right).50\] \[ = \left( { - 25} \right).\left( {38 + 12 - 50} \right)\] \[ = \left( { - 25} \right).0\] \( = 0\). |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(n\) là số ống mà hàng dưới cùng người công nhân đã xếp.
Theo bài, tổng số ống mà người công nhân xếp là: \(1 + 2 + 3 + ... + n\) (ống).
Tổng trên là tổng của dãy số \(1,\,\,2,\,\,3,\,\,...,\,\,\,n\) có \(n\) số hạng và cách đều nhau 1 đơn vị.
Như vậy, tổng của dãy số trên là:
\(1 + 2 + 3 + ... + n = \frac{{n \cdot \left( {n + 1} \right)}}{2}.\)
Theo bài, người công nhân cần xếp 465 ống nên ta có:
\(\frac{{n \cdot \left( {n + 1} \right)}}{2} = 465.\)
Suy ra \(n \cdot \left( {n + 1} \right) = 930.\)
Hai số \(n\), \(n + 1\) là hai số tự nhiên liên tiếp và ta thấy rằng \(30 \cdot 31 = 930\) nên \(n = 30.\)
Vậy người công nhân cần xếp 30 hàng và hàng dưới cùng xếp 30 ống.
Lời giải
Hướng dẫn giải
|
1. a) \(5x - {2^3} = {3^3}\) \(5x - 8 = 27\) \(5x = 27 + 8\) \(5x = 35\) \(x = 35 : 5\) \(x = 7\) Vậy \(x = 7\). |
1. b) \(51 - 3\left( {x + 2} \right) = 60\) \(3\left( {x + 2} \right) = 51 - 60\) \(3\left( {x + 2} \right) = - 9\) \(x + 2 = -9 : 3\) \(x + 2 = - 3\) \(x = - 5\) Vậy \(x = - 5\). |
1. c) \({3^{x + 2}} + {3^x} = 10\) \({3^x}{.3^2} + {3^x} = 10\) \({3^x}.\left( {{3^2} + 1} \right) = 10\) \({3^x}.10 = 10\) \({3^x} = 10 :10\) \({3^x} = 1\) \({3^x} = {3^0}\) Suy ra \(x = 0\). Vậy \(x = 0\). |
2. Để \(\overline {71a1b} \) chia hết cho 45 thì \(\overline {71a1b} \) chia hết cho 5 và 9.
Vì \(\overline {71a1b} \,\, \vdots \,\,5\) nên \(b \in \left\{ {0\,;\,\,5} \right\}\).
Vì \(\overline {71a1b} \,\, \vdots \,\,9\) thì \[\left( {7 + 1 + a + 1 + b} \right)\,\, \vdots \,\,9\] hay \[\left( {9 + a + b} \right)\,\, \vdots \,\,9\].
Với \(b = 0\) thì \[\left( {9 + a + 0} \right)\,\, \vdots \,\,9\] nên \(a \in \left\{ {0\,;\,\,9} \right\}.\)
Với \(b = 5\) thì \[\left( {9 + a + 5} \right)\,\, \vdots \,\,9\] nên \(a = 4.\)
Vậy để \(\overline {71a1b} \) chia hết cho 45 thì cặp số \[\left( {a;\,\,b} \right)\] lần lượt là \[\left( {0\,;\,\,0} \right)\,;\,\,\left( {9\,;\,\,0} \right)\,;\,\,\left( {4\,;\,\,5} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




