Câu hỏi:
30/06/2025 22
Thực hiện phép tính (tính hợp lí nếu có thể):
a) \(\frac{2}{5} - \frac{1}{5} \cdot \frac{3}{{ - 4}}.\)
b) \(\left( { - 12,5} \right) + 17,55 + \left( { - 3,5} \right) - \left( { - 2,45} \right).\)
c) \(\frac{{ - 3}}{5}:\frac{7}{5} - \frac{3}{5}:\frac{7}{5} + 2\frac{3}{5}.\)
d) \[1\frac{{13}}{{15}} \cdot {\left( {0,5} \right)^2} \cdot 3 + \left( {40\% - 1\frac{{19}}{{60}}} \right):1\frac{7}{8}.\]
Thực hiện phép tính (tính hợp lí nếu có thể):
a) \(\frac{2}{5} - \frac{1}{5} \cdot \frac{3}{{ - 4}}.\)
b) \(\left( { - 12,5} \right) + 17,55 + \left( { - 3,5} \right) - \left( { - 2,45} \right).\)
c) \(\frac{{ - 3}}{5}:\frac{7}{5} - \frac{3}{5}:\frac{7}{5} + 2\frac{3}{5}.\)
d) \[1\frac{{13}}{{15}} \cdot {\left( {0,5} \right)^2} \cdot 3 + \left( {40\% - 1\frac{{19}}{{60}}} \right):1\frac{7}{8}.\]
Quảng cáo
Trả lời:
a) \(\frac{2}{5} - \frac{1}{5} \cdot \frac{3}{{ - 4}}\)
\( = \frac{2}{5} - \frac{3}{{ - 20}}\)
\( = \frac{8}{{20}} + \frac{3}{{20}}\)
\( = \frac{{11}}{{20}}.\)
b) \[\left( { - 12,5} \right) + 17,55 + \left( { - 3,5} \right) - \left( { - 2,45} \right)\]
\[ = \left[ {\left( { - 12,5} \right) + \left( { - 3,5} \right)} \right] + \left[ {17,55 - \left( { - 2,45} \right)} \right]\]
\[ = \left( { - 16} \right) + \left[ {17,55 + 2,45} \right]\]
\[ = \left( { - 16} \right) + 20\]
\[ = 4.\]
c) \(\frac{{ - 3}}{5}:\frac{7}{5} - \frac{3}{5}:\frac{7}{5} + 2\frac{3}{5}\)
\( = \frac{{ - 3}}{5} \cdot \frac{5}{7} - \frac{3}{5} \cdot \frac{5}{7} + 2 + \frac{3}{5}\)
\[ = \frac{5}{7} \cdot \left( {\frac{{ - 3}}{5} - \frac{3}{5}} \right) + 2 + \frac{3}{5}\]
\[ = \frac{5}{7} \cdot \frac{{ - 6}}{5} + 2 + \frac{3}{5}\]
\[ = \frac{{ - 6}}{7} + 2 + \frac{3}{5}\]
\[ = \frac{{ - 30}}{{35}} + \frac{{70}}{{35}} + \frac{{21}}{{35}}\]
\[ = \frac{{61}}{{35}}.\]
d) \[1\frac{{13}}{{15}} \cdot {\left( {0,5} \right)^2} \cdot 3 + \left( {40\% - 1\frac{{19}}{{60}}} \right):1\frac{7}{8}\]
\( = \frac{{28}}{{15}} \cdot {\left( {\frac{1}{2}} \right)^2} \cdot 3 + \left( {\frac{2}{5} - \frac{{79}}{{60}}} \right):\frac{{15}}{8}\)
\( = \frac{{28}}{{15}} \cdot \frac{1}{4} \cdot 3 + \left( {\frac{{24}}{{60}} - \frac{{79}}{{60}}} \right) \cdot \frac{8}{{15}}\)
\[ = \frac{7}{5} + \frac{{ - 55}}{{60}} \cdot \frac{8}{{15}}\]
\[ = \frac{7}{5} + \frac{{ - 22}}{{45}}\]
\[ = \frac{{63}}{{45}} + \frac{{ - 22}}{{45}} = \frac{{41}}{{43}}.\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(x - \frac{5}{6} = \frac{{ - 7}}{6}\)
\(x = \frac{{ - 7}}{6} + \frac{5}{6}\)
\(x = \frac{{ - 2}}{6}\)
\(x = \frac{{ - 1}}{3}.\)
Vậy \(x = \frac{{ - 1}}{3}.\)b) \[x + 1,05 = 0,2 - 4,25\]
\[x + 1,05 = - 4,05\]
\[x = - 4,05 - 1,05\]
\[x = - 5,1\].
Vậy \[x = - 5,1.\]c) \(\left( {5 - 4x} \right)\left( {\frac{5}{4}x - 2} \right) = 0\)
\[5 - 4x = 0\] hoặc \(\frac{5}{4}x - 2 = 0\)Trường hợp 1:
\[5 - 4x = 0\]
\(4x = 5\)
\(x = \frac{5}{4}\)
Trường hợp 2:
\(\frac{5}{4}x - 2 = 0\)
\(\frac{5}{4}x = 2\)
\(x = 2:\frac{5}{4}\)
\(x = \frac{8}{5}.\)Lời giải
a) Số cam còn lại sau buổi sáng là: \(100\% - 60\% = 40\% \) (tổng số cam).
Số cam buổi chiều bán được là \(\frac{{13}}{{18}} \cdot 40\% = \frac{{13}}{{45}}\) (tổng số cam).
Số cam còn lại sau cả một ngày bán là: \(40\% - \frac{{13}}{{45}} = \frac{1}{9}\) (tổng số cam).
\(20\) quả cam chiếm \(\frac{1}{9}\) tổng số cam nên số cam người đó mang đi bán là: \(20:\frac{1}{9} = 180\) (quả).
b) Số quả cam bán trong buổi sáng là: \(180 \cdot 60\% = 108\) (quả).
Số quả cam bán trong buổi chiều là: \(180 - 108 - 20 = 52\) (quả).
Tổng số cam bán được trong ngày là: \(108 + 52 = 160\) (quả).
Tỉ số phần trăm số cam người đó bán được buổi sáng so với tổng số cam bán được trong ngày là \(\frac{{108}}{{160}} \cdot 100\% = 67,5\% .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.