Biết độ dài ba cạnh của một tam giác tỉ lệ với các số \(3;5;7\) và chu vi của tam giác đó là \(45{\rm{ cm}}{\rm{.}}\) Hỏi độ dài cạnh lớn nhất của tam giác đó là bao nhiêu centimet?
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án: \(21\)
Gọi độ dài ba cạnh của tam giác là \(x;y;z\) (đơn vị: cm).
Theo đề, ta có: ba số \(x;y;z\) tỉ lệ với \(3;5;7\) nghĩa là \(\frac{x}{3} = \frac{y}{5} = \frac{z}{7}\).
Vì \(\frac{x}{3} = \frac{y}{5} = \frac{z}{7}\) nên áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3} = \frac{y}{5} = \frac{z}{7} = \frac{{x + y + z}}{{3 + 5 + 7}} = \frac{{45}}{{15}} = 3\).
Suy ra \(\frac{x}{3} = 3\) nên \(x = 3.3 = 9\).
\(\frac{y}{5} = 3\) nên \(y = 3.5 = 15\).
\(\frac{z}{7} = 3\) nên \(z = 3.7 = 21\).
Vậy tam giác có ba cạnh là \(9{\rm{ cm, 15 cm, 21 cm}}{\rm{.}}\)
Do đó, cạnh lớn nhất của tam giác là \({\rm{21 cm}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có: \(f\left( x \right) + g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 + {x^3} - 5{x^4} + 3{x^2} - 3\)
\(f\left( x \right) + g\left( x \right) = \left( {{x^2} + 3{x^2}} \right) + \left( { - 5{x^4} - 5{x^4}} \right) + {x^3} - 2x + 3\)
\(f\left( x \right) + g\left( x \right) = - 10{x^4} + {x^3} + 4{x^2} - 2x + 3\).
b) Ta có: \(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - \left( {{x^3} - 5{x^4} + 3{x^2} - 3} \right)\)
\(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - {x^3} + 5{x^4} - 3{x^2} + 3\)
\(f\left( x \right) - g\left( x \right) = \left( { - 5{x^4} + 5{x^4}} \right) + \left( {{x^2} - 3{x^2}} \right) - 2x - {x^3} + 9\)
\(f\left( x \right) - g\left( x \right) = - {x^3} - 2{x^2} - 2x + 9\).
Theo đề, ta có: \(h\left( x \right) + f\left( x \right) - g\left( x \right) = - 2{x^3} - x + 9\)
Hay \(h\left( x \right) + \left( { - {x^3} - 2{x^2} - 2x + 9} \right) = - 2{x^3} - x + 9\)
Suy ra \(h\left( x \right) = - 2{x^3} - x + 9 - \left( { - {x^3} - 2{x^2} - 2x + 9} \right)\)
\(h\left( x \right) = - 2{x^3} - x + 9 + {x^3} + 2{x^2} + 2x - 9\)
\(h\left( x \right) = \left( { - 2{x^3} + {x^3}} \right) + \left( { - x + 2x} \right) + 2{x^2} + 9 - 9\)
\(h\left( x \right) = - {x^3} + x + 2{x^2}\) hay \(h\left( x \right) = - {x^3} + 2{x^2} + x.\)
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đb) Đc) Sd) S
Gọi \(x,y,z\) lần lượt là số bút bi bác An mua loại \(I,\) \(II\), \(III\).
Điều kiện của \(x,y,z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 74.\)
Theo đề bài, bác An mua \(74\) chiếc bút bi nên ta có phương trình \(x + y + z = 74\).
Vì số tiền bác An mua mỗi loại bút bi là như nhau nên ta có \(6x = 5y = 4z\) hay \(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{5}}} = \frac{z}{{\frac{1}{4}}}.\)
Theo tính chất dãy tỉ số bằng nhau nên ta có:
\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{5}}} = \frac{z}{{\frac{1}{4}}} = \frac{{x + y + z}}{{\frac{1}{6} + \frac{1}{5} + \frac{1}{4}}} = \frac{{74}}{{\frac{{37}}{{60}}}} = 120\).
Suy ra \(x = \frac{1}{6}.120 = 20;y = \frac{1}{5}.120 = 24;z = \frac{1}{4}.120 = 30.\)
Vậy số bút bác An mua loại \(I,\) \(II\), \(III\) lần lượt là \(20\) chiếc, \(24\) chiếc, \(30\) chiếc.
Do đó, số bút loại \(I\) ít hơn số bút loại \(II\) là \(4\) chiếc.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.