(1,0 điểm) Cho \(\Delta ABC\) cân tại \(A\) có hai đường trung tuyến \(BD\) và \(CE\) cắt nhau tại \(G\). Biết \(BD = CE\).
a) Chứng minh tam giác \(GBC\) là tam giác cân.
b) Chứng minh \(DG + EG > \frac{1}{2}BC\).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Vì hai trung tuyến \(BD\) và \(CE\) cắt nhau tại \(G\) nên \(G\) là trọng tâm \(\Delta ABC\).
Do đó, \(BG = \frac{2}{3}BD;CG = \frac{2}{3}CE\) (tính chất trọng tâm tam giác)
Mà \(BD = CE\) (giả thiết) nên \(\frac{2}{3}BD = \frac{2}{3}CE\) hay \(BG = CG\).
Suy ra tam giác \(GBC\) là tam giác cân.
b) Ta có: \(BG = \frac{2}{3}BD\) nên \(DG = \frac{1}{3}BD\) do đó \(BG = 2DG\) hay \(DG = \frac{1}{2}BG.\)
Lại có \(CG = \frac{2}{3}CE\) nên \(GE = \frac{1}{3}CE\) do đó \(CG = 2CE\) hay \(CE = \frac{1}{2}CG\).
Mà \(BG = CG\) (cmt) nên \(DG = EG\).
Ta có: \(DG + EG = \frac{1}{2}BG + \frac{1}{2}CG = \frac{1}{2}\left( {BG + CG} \right)\).
Xét tam giác \(GBC\) có \(BG + CG > BG\) (trong một tam giác tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại).
Vậy \(DG + EG > \frac{1}{2}BC\) (đpcm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: \( - 3\)
Ta có: \(P\left( x \right) = 2{x^3} + {x^2} + 5 - 3x + 3{x^2} - 2{x^3} - 4{x^2} + 1\)
\(P\left( x \right) = \left( {2{x^3} - 2{x^3}} \right) + \left( {{x^2} + 3{x^2} - 4{x^2}} \right) - 3x + 6\)
\(P\left( x \right) = - 3x + 6\).
Thay \(x = 0\) vào đa thức \(P\left( x \right)\), ta được: \(P\left( 0 \right) = 6\).
Thay \(x = - 1\) vào đa thức \(P\left( x \right)\), ta được: \(P\left( { - 1} \right) = - 3.\left( { - 1} \right) + 6 = 9\).
Do đó, \(P\left( 0 \right) - P\left( { - 1} \right) = 6 - 9 = - 3\).
Lời giải
Hướng dẫn giải
a) Ta có: \(f\left( x \right) + g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 + {x^3} - 5{x^4} + 3{x^2} - 3\)
\(f\left( x \right) + g\left( x \right) = \left( {{x^2} + 3{x^2}} \right) + \left( { - 5{x^4} - 5{x^4}} \right) + {x^3} - 2x + 3\)
\(f\left( x \right) + g\left( x \right) = - 10{x^4} + {x^3} + 4{x^2} - 2x + 3\).
b) Ta có: \(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - \left( {{x^3} - 5{x^4} + 3{x^2} - 3} \right)\)
\(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - {x^3} + 5{x^4} - 3{x^2} + 3\)
\(f\left( x \right) - g\left( x \right) = \left( { - 5{x^4} + 5{x^4}} \right) + \left( {{x^2} - 3{x^2}} \right) - 2x - {x^3} + 9\)
\(f\left( x \right) - g\left( x \right) = - {x^3} - 2{x^2} - 2x + 9\).
Theo đề, ta có: \(h\left( x \right) + f\left( x \right) - g\left( x \right) = - 2{x^3} - x + 9\)
Hay \(h\left( x \right) + \left( { - {x^3} - 2{x^2} - 2x + 9} \right) = - 2{x^3} - x + 9\)
Suy ra \(h\left( x \right) = - 2{x^3} - x + 9 - \left( { - {x^3} - 2{x^2} - 2x + 9} \right)\)
\(h\left( x \right) = - 2{x^3} - x + 9 + {x^3} + 2{x^2} + 2x - 9\)
\(h\left( x \right) = \left( { - 2{x^3} + {x^3}} \right) + \left( { - x + 2x} \right) + 2{x^2} + 9 - 9\)
\(h\left( x \right) = - {x^3} + x + 2{x^2}\) hay \(h\left( x \right) = - {x^3} + 2{x^2} + x.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.