Câu hỏi:

30/06/2025 82 Lưu

(1,0 điểm) Cho \(\Delta ABC\) cân tại \(A\) có hai đường trung tuyến \(BD\) và \(CE\) cắt nhau tại \(G\). Biết \(BD = CE\).

a) Chứng minh tam giác \(GBC\) là tam giác cân.

b) Chứng minh \(DG + EG > \frac{1}{2}BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

(1,0 điểm) Cho   Δ A B C   cân tại   A   có hai đường trung tuyến   B D   và   C E   cắt nhau tại   G  . Biết   B D = C E  .  a) Chứng minh tam giác   G B C   là tam giác cân.  b) Chứng minh   D G + E G > 1 2 B C  . (ảnh 1)

a) Vì hai trung tuyến \(BD\) và \(CE\) cắt nhau tại \(G\) nên \(G\) là trọng tâm \(\Delta ABC\).

Do đó, \(BG = \frac{2}{3}BD;CG = \frac{2}{3}CE\) (tính chất trọng tâm tam giác)

Mà \(BD = CE\) (giả thiết) nên \(\frac{2}{3}BD = \frac{2}{3}CE\) hay \(BG = CG\).

Suy ra tam giác \(GBC\) là tam giác cân.

b) Ta có: \(BG = \frac{2}{3}BD\) nên \(DG = \frac{1}{3}BD\) do đó \(BG = 2DG\) hay \(DG = \frac{1}{2}BG.\)

Lại có \(CG = \frac{2}{3}CE\) nên \(GE = \frac{1}{3}CE\) do đó \(CG = 2CE\) hay \(CE = \frac{1}{2}CG\).

Mà \(BG = CG\) (cmt) nên \(DG = EG\).

Ta có: \(DG + EG = \frac{1}{2}BG + \frac{1}{2}CG = \frac{1}{2}\left( {BG + CG} \right)\).

Xét tam giác \(GBC\) có \(BG + CG > BG\) (trong một tam giác tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại).

Vậy \(DG + EG > \frac{1}{2}BC\) (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có: \(f\left( x \right) + g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 + {x^3} - 5{x^4} + 3{x^2} - 3\)

\(f\left( x \right) + g\left( x \right) = \left( {{x^2} + 3{x^2}} \right) + \left( { - 5{x^4} - 5{x^4}} \right) + {x^3} - 2x + 3\)

\(f\left( x \right) + g\left( x \right) = - 10{x^4} + {x^3} + 4{x^2} - 2x + 3\).

b) Ta có: \(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - \left( {{x^3} - 5{x^4} + 3{x^2} - 3} \right)\)

\(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - {x^3} + 5{x^4} - 3{x^2} + 3\)

\(f\left( x \right) - g\left( x \right) = \left( { - 5{x^4} + 5{x^4}} \right) + \left( {{x^2} - 3{x^2}} \right) - 2x - {x^3} + 9\)

\(f\left( x \right) - g\left( x \right) = - {x^3} - 2{x^2} - 2x + 9\).

Theo đề, ta có: \(h\left( x \right) + f\left( x \right) - g\left( x \right) = - 2{x^3} - x + 9\)

Hay \(h\left( x \right) + \left( { - {x^3} - 2{x^2} - 2x + 9} \right) = - 2{x^3} - x + 9\)

Suy ra \(h\left( x \right) = - 2{x^3} - x + 9 - \left( { - {x^3} - 2{x^2} - 2x + 9} \right)\)

\(h\left( x \right) = - 2{x^3} - x + 9 + {x^3} + 2{x^2} + 2x - 9\)

\(h\left( x \right) = \left( { - 2{x^3} + {x^3}} \right) + \left( { - x + 2x} \right) + 2{x^2} + 9 - 9\)

\(h\left( x \right) = - {x^3} + x + 2{x^2}\) hay \(h\left( x \right) = - {x^3} + 2{x^2} + x.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Sd) S

Gọi \(x,y,z\) lần lượt là số bút bi bác An mua loại \(I,\) \(II\), \(III\).

Điều kiện của \(x,y,z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 74.\)

Theo đề bài, bác An mua \(74\) chiếc bút bi nên ta có phương trình \(x + y + z = 74\).

Vì số tiền bác An mua mỗi loại bút bi là như nhau nên ta có \(6x = 5y = 4z\) hay \(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{5}}} = \frac{z}{{\frac{1}{4}}}.\)

Theo tính chất dãy tỉ số bằng nhau nên ta có:

\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{5}}} = \frac{z}{{\frac{1}{4}}} = \frac{{x + y + z}}{{\frac{1}{6} + \frac{1}{5} + \frac{1}{4}}} = \frac{{74}}{{\frac{{37}}{{60}}}} = 120\).

Suy ra \(x = \frac{1}{6}.120 = 20;y = \frac{1}{5}.120 = 24;z = \frac{1}{4}.120 = 30.\)

Vậy số bút bác An mua loại \(I,\) \(II\), \(III\) lần lượt là \(20\) chiếc, \(24\) chiếc, \(30\) chiếc.

Do đó, số bút loại \(I\) ít hơn số bút loại \(II\) là \(4\) chiếc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP