Câu hỏi:
30/06/2025 24Cho hình vẽ sau:
Xét tính đúng – sai trong các mệnh đề dưới đây:
a) \(MA > MH.\)
b) \(MC > MB.\)
c) \(MA = MB.\)
d) \(MC < MA.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đb) Đc) Đd) S
a) Vì \(MH\) là đường vuông góc và \(MA\) là đường xiên nên \(MA > MH\) (quan hệ đường vuông góc và đường xiên).
Do đó, ý a) đúng.
b) Vì \(\widehat {MBC}\) là góc ngoài của \(\Delta MHB\) suy ra \(\widehat {MBC} > \widehat {MHB} = 90^\circ \).
Xét \(\Delta MBC\) có \(\widehat {MBC}\) là góc tù nên suy ra \(MC > MB\) (quan hệ giữa góc và cạnh trong tam giác)
Do đó, ý b) đúng.
c) Mà \(HB\) và \(HC\) lần lượt là hình chiếu của \(MB\) và \(MC\) trên \(AC\).
Suy ra \(HB < HC\) (quan hệ giữa đường xiên và hình chiếu)
Vì \(AH = HB\) (gt) mà \(AH,HB\) lần lượt là hai hình chiếu của \(AM,BM\).
Suy ra \(MA = MB\) (quan hệ giữa đường xiên và hình chiếu).
Do đó, ý c) đúng.
d) Ta có \(MA = MB\) (cmt) và \(MC > MB\) (cmt) nên \(MC > MA\).
Do đó, ý d) sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: \(6\)
Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x;y\) (cm).
Ta có: \(\frac{x}{y} = \frac{3}{2}\) suy ra \(\frac{x}{3} = \frac{y}{2} = \frac{{x + y}}{{3 + 2}} = \frac{{10}}{5} = 4\).
Từ \(\frac{x}{3} = 2\) suy ra \(x = 3.2 = 6\); \(\frac{y}{2} = 2\) suy ra \(y = 2.2 = 4\).
Vậy chiều dài của hình chữ nhật đó là \(6{\rm{ cm}}{\rm{.}}\)
Lời giải
Hướng dẫn giải
a) Ta có: \(f\left( x \right) + g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 + {x^3} - 5{x^4} + 3{x^2} - 3\)
\(f\left( x \right) + g\left( x \right) = \left( {{x^2} + 3{x^2}} \right) + \left( { - 5{x^4} - 5{x^4}} \right) + {x^3} - 2x + 3\)
\(f\left( x \right) + g\left( x \right) = - 10{x^4} + {x^3} + 4{x^2} - 2x + 3\).
b) Ta có: \(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - \left( {{x^3} - 5{x^4} + 3{x^2} - 3} \right)\)
\(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - {x^3} + 5{x^4} - 3{x^2} + 3\)
\(f\left( x \right) - g\left( x \right) = \left( { - 5{x^4} + 5{x^4}} \right) + \left( {{x^2} - 3{x^2}} \right) - 2x - {x^3} + 9\)
\(f\left( x \right) - g\left( x \right) = - {x^3} - 2{x^2} - 2x + 9\).
Theo đề, ta có: \(h\left( x \right) + f\left( x \right) - g\left( x \right) = - 2{x^3} - x + 9\)
Hay \(h\left( x \right) + \left( { - {x^3} - 2{x^2} - 2x + 9} \right) = - 2{x^3} - x + 9\)
Suy ra \(h\left( x \right) = - 2{x^3} - x + 9 - \left( { - {x^3} - 2{x^2} - 2x + 9} \right)\)
\(h\left( x \right) = - 2{x^3} - x + 9 + {x^3} + 2{x^2} + 2x - 9\)
\(h\left( x \right) = \left( { - 2{x^3} + {x^3}} \right) + \left( { - x + 2x} \right) + 2{x^2} + 9 - 9\)
\(h\left( x \right) = - {x^3} + x + 2{x^2}\) hay \(h\left( x \right) = - {x^3} + 2{x^2} + x.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.