Câu hỏi:

30/06/2025 20

Cho hình vẽ bên, biết \(AB = DC\), \(\widehat {BAC} = \widehat {BDC} = 90^\circ \) và \(ED = 4{\rm{ cm}}\). Hỏi khoảng cách từ \(E\) đến đường thẳng \(AB\) là bao nhiêu centimet?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(4\)

Cho hình vẽ bên, biết   A B = D C  ,   ˆ B A C = ˆ B D C = 90 ∘   và   E D = 4 c m  . Hỏi khoảng cách từ   E   đến đường thẳng   A B   là bao nhiêu centimet? (ảnh 1)

Xét

\(\Delta ABE\) có \(\widehat A + \widehat B + \widehat {AEB} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat {AEB}\) (1)

Xét \(\Delta CED\) có \(\widehat C + \widehat D + \widehat {CED} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat C = 180^\circ - \widehat D - \widehat {CED}\) (2)

Mà \(\widehat {AEB} = \widehat {CED}\) (Hai góc đối đỉnh) (3)

Từ (1), (2) và (3) suy ra \(\widehat B = \widehat C\).

Xét \(\Delta ABE\) và \(\Delta DCE\) có:

\(\widehat {BAC} = \widehat {BDC} = 90^\circ \)

\(AB = CD\)

\(\widehat B = \widehat C\)

Do đó, \(\Delta ABE = \Delta DCE\) (g.c.g)

Suy ra \(AE = DE\) (hai cạnh tương ứng)

Mà \(ED = 4{\rm{ cm}}\) nên \(EA = 4{\rm{ cm}}\).

Khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(EA\) (Vì \(AE \bot AB\) tại \(A\))

Vậy khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(4{\rm{ cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \(6\)

Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x;y\) (cm).

Ta có: \(\frac{x}{y} = \frac{3}{2}\) suy ra \(\frac{x}{3} = \frac{y}{2} = \frac{{x + y}}{{3 + 2}} = \frac{{10}}{5} = 4\).

Từ \(\frac{x}{3} = 2\) suy ra \(x = 3.2 = 6\); \(\frac{y}{2} = 2\) suy ra \(y = 2.2 = 4\).

Vậy chiều dài của hình chữ nhật đó là \(6{\rm{ cm}}{\rm{.}}\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Đd) S

Cho hình vẽ sau:    Xét tính đúng – sai trong các mệnh đề dưới đây:  a)   M A > M H .    b)   M C > M B .    c)   M A = M B .    d)   M C < M A . (ảnh 2)

a) Vì \(MH\) là đường vuông góc và \(MA\) là đường xiên nên \(MA > MH\) (quan hệ đường vuông góc và đường xiên).

Do đó, ý a) đúng.

b) Vì \(\widehat {MBC}\) là góc ngoài của \(\Delta MHB\) suy ra \(\widehat {MBC} > \widehat {MHB} = 90^\circ \).

Xét \(\Delta MBC\) có \(\widehat {MBC}\) là góc tù nên suy ra \(MC > MB\) (quan hệ giữa góc và cạnh trong tam giác)

Do đó, ý b) đúng.

c) Mà \(HB\) và \(HC\) lần lượt là hình chiếu của \(MB\) và \(MC\) trên \(AC\).

Suy ra \(HB < HC\) (quan hệ giữa đường xiên và hình chiếu)

Vì \(AH = HB\) (gt) mà \(AH,HB\) lần lượt là hai hình chiếu của \(AM,BM\).

Suy ra \(MA = MB\) (quan hệ giữa đường xiên và hình chiếu).

Do đó, ý c) đúng.

d) Ta có \(MA = MB\) (cmt) và \(MC > MB\) (cmt) nên \(MC > MA\).

Do đó, ý d) sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP