Câu hỏi:

30/06/2025 65 Lưu

Cho hình vẽ bên, biết \(AB = DC\), \(\widehat {BAC} = \widehat {BDC} = 90^\circ \) và \(ED = 4{\rm{ cm}}\). Hỏi khoảng cách từ \(E\) đến đường thẳng \(AB\) là bao nhiêu centimet?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(4\)

Cho hình vẽ bên, biết   A B = D C  ,   ˆ B A C = ˆ B D C = 90 ∘   và   E D = 4 c m  . Hỏi khoảng cách từ   E   đến đường thẳng   A B   là bao nhiêu centimet? (ảnh 1)

Xét

\(\Delta ABE\) có \(\widehat A + \widehat B + \widehat {AEB} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat {AEB}\) (1)

Xét \(\Delta CED\) có \(\widehat C + \widehat D + \widehat {CED} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat C = 180^\circ - \widehat D - \widehat {CED}\) (2)

Mà \(\widehat {AEB} = \widehat {CED}\) (Hai góc đối đỉnh) (3)

Từ (1), (2) và (3) suy ra \(\widehat B = \widehat C\).

Xét \(\Delta ABE\) và \(\Delta DCE\) có:

\(\widehat {BAC} = \widehat {BDC} = 90^\circ \)

\(AB = CD\)

\(\widehat B = \widehat C\)

Do đó, \(\Delta ABE = \Delta DCE\) (g.c.g)

Suy ra \(AE = DE\) (hai cạnh tương ứng)

Mà \(ED = 4{\rm{ cm}}\) nên \(EA = 4{\rm{ cm}}\).

Khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(EA\) (Vì \(AE \bot AB\) tại \(A\))

Vậy khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(4{\rm{ cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \( - 3\)

Ta có: \(P\left( x \right) = 2{x^3} + {x^2} + 5 - 3x + 3{x^2} - 2{x^3} - 4{x^2} + 1\)

\(P\left( x \right) = \left( {2{x^3} - 2{x^3}} \right) + \left( {{x^2} + 3{x^2} - 4{x^2}} \right) - 3x + 6\)

\(P\left( x \right) = - 3x + 6\).

Thay \(x = 0\) vào đa thức \(P\left( x \right)\), ta được: \(P\left( 0 \right) = 6\).

Thay \(x = - 1\) vào đa thức \(P\left( x \right)\), ta được: \(P\left( { - 1} \right) = - 3.\left( { - 1} \right) + 6 = 9\).

Do đó, \(P\left( 0 \right) - P\left( { - 1} \right) = 6 - 9 = - 3\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Sd) S

Gọi \(x,y,z\) lần lượt là số bút bi bác An mua loại \(I,\) \(II\), \(III\).

Điều kiện của \(x,y,z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 74.\)

Theo đề bài, bác An mua \(74\) chiếc bút bi nên ta có phương trình \(x + y + z = 74\).

Vì số tiền bác An mua mỗi loại bút bi là như nhau nên ta có \(6x = 5y = 4z\) hay \(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{5}}} = \frac{z}{{\frac{1}{4}}}.\)

Theo tính chất dãy tỉ số bằng nhau nên ta có:

\(\frac{x}{{\frac{1}{6}}} = \frac{y}{{\frac{1}{5}}} = \frac{z}{{\frac{1}{4}}} = \frac{{x + y + z}}{{\frac{1}{6} + \frac{1}{5} + \frac{1}{4}}} = \frac{{74}}{{\frac{{37}}{{60}}}} = 120\).

Suy ra \(x = \frac{1}{6}.120 = 20;y = \frac{1}{5}.120 = 24;z = \frac{1}{4}.120 = 30.\)

Vậy số bút bác An mua loại \(I,\) \(II\), \(III\) lần lượt là \(20\) chiếc, \(24\) chiếc, \(30\) chiếc.

Do đó, số bút loại \(I\) ít hơn số bút loại \(II\) là \(4\) chiếc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP