Câu hỏi:

03/07/2025 40 Lưu

Cặp số \(\left( { - 2;\,\, - 3} \right)\) là nghiệm của hệ phương trình nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cách 1. Để kiểm tra xem cặp số \(\left( { - 2;\,\, - 3} \right)\) là nghiệm của hệ phương trình nào, ta thay \(x = - 2\) và \(y = - 3\) vào từng hệ phương trình:

⦁ Xét phương án A. \(\left\{ {\begin{array}{*{20}{l}}{x - 2y = 3}\\{2x + y = 4}\end{array}} \right.\)

Thay\(x = - 2\) và \(y = - 3\) vào hệ phương trình trên ta được: \(\left\{ \begin{array}{l} - 2 - 2 \cdot \left( { - 3} \right) = 4 \ne 3\\2 \cdot \left( { - 2} \right) + \left( { - 3} \right) = - 7 \ne 4.\end{array} \right.\)

Do đó cặp số \(\left( { - 2;\,\, - 3} \right)\) không phải là nghiệm của hệ phương trình ở phương án A.

⦁ Xét phương án B. \(\left\{ {\begin{array}{*{20}{l}}{2x - y = - 1}\\{x - 3y = 8}\end{array}} \right.\)

Thay\(x = - 2\) và \(y = - 3\) vào hệ phương trình trên ta được: \(\left\{ \begin{array}{l}2 \cdot \left( { - 2} \right) - \left( { - 3} \right) = - 1\\ - 2 - 3 \cdot \left( { - 3} \right) = 7 \ne 8.\end{array} \right.\)

Do đó cặp số \(\left( { - 2;\,\, - 3} \right)\) không phải là nghiệm của hệ phương trình ở phương án B.

⦁ Xét phương án C. \(\left\{ {\begin{array}{*{20}{l}}{2x - y = - 1}\\{x - 3y = 7}\end{array}} \right.\)

Thay\(x = - 2\) và \(y = - 3\) vào hệ phương trình trên ta được: \(\left\{ \begin{array}{l}2 \cdot \left( { - 2} \right) - \left( { - 3} \right) = - 1\\ - 2 - 3 \cdot \left( { - 3} \right) = 7.\end{array} \right.\)

Do đó cặp số \(\left( { - 2;\,\, - 3} \right)\) là nghiệm của hệ phương trình ở phương án C.

⦁ Xét phương án D. \(\left\{ {\begin{array}{*{20}{l}}{4x - 2y = 0}\\{x + y = - 5.}\end{array}} \right.\)

Thay\(x = - 2\) và \(y = - 3\) vào hệ phương trình trên ta được: \(\left\{ \begin{array}{l}4 \cdot \left( { - 2} \right) - 2 \cdot \left( { - 3} \right) = - 2 \ne 0\\ - 2 + \left( { - 3} \right) = - 5.\end{array} \right.\)

Do đó cặp số \(\left( { - 2;\,\, - 3} \right)\) không phải là nghiệm của hệ phương trình ở phương án D.

Vậy cặp số \(\left( { - 2;\,\, - 3} \right)\) là nghiệm của hệ phương trình ở phương án C.

Cách 2. Sử dụng máy tính cầm tay để tìm nghiệm của mỗi hệ phương trình.

⦁ Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x - 2y = 3}\\{2x + y = 4}\end{array}} \right.\). Ta lần lượt bấm các phím

Cặp số   ( − 2 ; − 3 )   là nghiệm của hệ phương trình nào sau đây? (ảnh 1)

Như vậy, ta thấy rằng cặp số \(\left( { - 2;\,\, - 3} \right)\) không phải là nghiệm của hệ phương trình này.

⦁ Tương tự như trên, ta tìm được \(\left( { - 2;\,\, - 3} \right)\) là nghiệm của hệ phương trình ở phương án C.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. Xét \(\Delta ABD\) vuông tại \(B\), ta có:

\(\tan \widehat {BAD} = \frac{{BD}}{{AB}} = \frac{3}{5},\) từ đó ta tìm được \(\alpha = \widehat {BAD} \approx 31^\circ \).

Suy ra \(\widehat {BAC} = \widehat {BAD} + \widehat {DAC} \approx 31^\circ + 37^\circ = 68^\circ \).

Xét \(\Delta ABC\) vuông tại \(B\), ta có:

⦁ \[BC = AB \cdot \tan \widehat {BAC} \approx 5 \cdot \tan 68^\circ \approx 12,38,\] suy ra \(x = CD = BC - BD \approx 12,38 - 3 = 9,38;\)

⦁ \(AB = AC \cdot \cos \widehat {BAC}\) suy ra \(y = AC = \frac{{AB}}{{\cos \widehat {BAC}}} \approx \frac{5}{{\cos 68^\circ }} \approx 13,35\).

Vậy \(\alpha \approx 31^\circ ;\,\,x \approx 9,38\) và \(y \approx 13,35.\)

2. Quãng đường chiếc thuyền đi được giữa hai lần quan sát là \(CD.\)

Xét \(\Delta BCA\) vuông tại \(A\) ta có: \(AC = AB \cdot \cot \widehat {BCA} = 75 \cdot \cot 45^\circ = 75{\rm{\;(m)}}{\rm{.}}\)

Xét \(\Delta DBA\) vuông tại \(A\) ta có: \(AD = AB \cdot \cot \widehat {BDA} = 75 \cdot \cot 30^\circ = 75\sqrt 3 {\rm{\;(m)}}{\rm{.}}\)

Quãng đường chiếc thuyền đi được giữa hai lần quan sát là:

\(CD = AD - AC = 75\sqrt 3 - 75 \approx 55{\rm{\;(m)}}{\rm{.}}\).

Vậy chiếc thuyền đi được khoảng 55 mét giữa hai lần quan sát.

Lời giải

Hướng dẫn giải

1. Vì số nguyên tử của \({\rm{Fe,}}\,\,{\rm{O}}\) và \({\rm{H}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình: \(\left\{ \begin{array}{l}x = 2\\3x = 3 + y\\3x = 2y\end{array} \right.\)

Từ hai phương trình \(3x = 3 + y\) và \(3x = 2y\) ta có phương trình \(3 + y = 2y,\) suy ra \(y = 3.\)

Vậy \(x = 2\) và \(y = 3.\) Khi đó ta có phương trình phản ứng hóa học sau khi được cân bằng như sau:

\[2{\rm{Fe}}{\left( {{\rm{OH}}} \right)_3} \to {\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3} + 3{{\rm{H}}_2}{\rm{O}}.\]

2. Gọi \(x\) (đồng) và \(y\) (đồng) lần lượt là giá vé cáp treo khứ hồi và giá vé 1 lượt \(\left( {x > 0,\,\,y > 0} \right).\)

Do giá vé 1 lượt rẻ hơn giá vé khứ hồi là \[70{\rm{ }}000\] đồng nên ta có phương trình:

\(x - y = 70\,\,000.\,\,\,\left( 1 \right)\)

Do trong đoàn \(40\) người chỉ có \(5\) người mua vé cáp treo \(1\) lượt cho lượt xuống nên đã có \(40 - 5 = 35\) người mua vé cáp treo khứ hồi.

Khi đó, số tiền cần trả để mua \(35\) vé cáp treo khứ hồi và \(5\) vé cáp treo 1 lượt là: \(35x + 5y\) (đồng).

Theo bài, cả đoàn khách du lịch này đã chi ra \[8{\rm{ }}450{\rm{ }}000\] đồng để mua vé nên ta có phương trình:

\(35x + 5y = 8{\rm{ }}450{\rm{ }}000.\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = 70\,\,000\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\35x + 5y = 8{\rm{ }}450{\rm{ }}000\,\,\,\,\left( 2 \right)\end{array} \right.\)

Nhân hai vế của phương trình \(\left( 1 \right)\) với \(5,\) ta được hệ phương trình mới là: \(\left\{ \begin{array}{l}5x - 5y = 350\,\,000\\35x + 5y = 8{\rm{ }}450{\rm{ }}000.\end{array} \right.\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được:

\(40x = 8\,\,800\,\,000,\) suy ra \(x = 220\,\,000\) (thỏa mãn).

Thay \(x = 220\,\,000\) vào phương trình \(\left( 1 \right),\) ta được:

\(220\,\,000 - y = 70\,\,000,\) suy ra \(y = 150\,\,000\) (thỏa mãn).

Do đó hệ phương trình trên có nghiệm là \(\left( {x;\,\,y} \right) = \left( {220\,\,000;\,\,150\,\,000} \right).\)

Vậy giá vé cáp treo khứ hồi và giá vé cáp treo 1 lượt lần lượt là \(200\,\,000\) đồng và \(150\,\,000\) đồng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP