Câu hỏi:

06/07/2025 17

Xét hàm số \(f\left( x \right) = {\log _3}\left( {x + 2} \right) - {\log _{\frac{1}{3}}}\left( {x - 1} \right)\).

a) Điều kiện xác định của hàm số f(x) là x > 1.

b) Phương trình f(x) = 1 có một nghiệm duy nhất.

c) Tích hai nghiệm của phương trình f(x) = log3(6x – 9) bằng 3.

d) Bất phương trình \(f\left( x \right) > {\log _{\sqrt 3 }}\left( {x - 4} \right)\) có tập nghiệm S = (2; +).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Điều kiện \(\left\{ \begin{array}{l}x + 2 > 0\\x - 1 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x >  - 2\\x > 1\end{array} \right.\)\( \Leftrightarrow x > 1\).

b) f(x) = 1 Û \({\log _3}\left( {x + 2} \right) - {\log _{\frac{1}{3}}}\left( {x - 1} \right) = 1\)\( \Leftrightarrow {\log _3}\left( {x + 2} \right) + {\log _3}\left( {x - 1} \right) = 1\)

\( \Leftrightarrow {\log _3}\left[ {\left( {x + 2} \right)\left( {x - 1} \right)} \right] = 1\)\( \Leftrightarrow \left( {x + 2} \right)\left( {x - 1} \right) = 3\)\( \Leftrightarrow {x^2} + x - 5 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 1 + \sqrt {21} }}{2}\\x = \frac{{ - 1 - \sqrt {21} }}{2}\end{array} \right.\).

Vì x > 1 nên \(x = \frac{{ - 1 + \sqrt {21} }}{2}\).

c) f(x) = log3(6x – 9) Û log3[(x + 2)(x – 1)] = log3(6x – 9) Û x2 + x – 2 = 6x – 9

Û x2 – 5x + 7 = 0 (vô nghiệm).

d) \(f\left( x \right) > {\log _{\sqrt 3 }}\left( {x - 4} \right)\) \( \Leftrightarrow {\log _3}\left[ {\left( {x + 2} \right)\left( {x - 1} \right)} \right] > {\log _{\sqrt 3 }}\left( {x - 4} \right)\)

Điều kiện: x > 4

\({\log _3}\left[ {\left( {x + 2} \right)\left( {x - 1} \right)} \right] > {\log _{\sqrt 3 }}\left( {x - 4} \right)\)\( \Leftrightarrow {\log _3}\left[ {\left( {x + 2} \right)\left( {x - 1} \right)} \right] > {\log _3}{\left( {x - 4} \right)^2}\)

\( \Leftrightarrow \left( {x + 2} \right)\left( {x - 1} \right) > {\left( {x - 4} \right)^2}\)\( \Leftrightarrow {x^2} + x - 2 > {x^2} - 8x + 16\)\( \Leftrightarrow x > 2\).

Kết hợp điều kiện, ta có tập nghiệm của phương trình là S = (4; +∞).

Đáp án: a) Đúng;  b) Đúng;   c) Sai; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

\({2^{{x^2} - 4x + 4}} = {4^{2{x^2} - 3x + 2}}\)\( \Leftrightarrow {2^{{x^2} - 4x + 4}} = {2^{4{x^2} - 6x + 4}}\)\( \Leftrightarrow {x^2} - 4x + 4 = 4{x^2} - 6x + 4\)\( \Leftrightarrow 3{x^2} - 2x = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{2}{3}\end{array} \right.\).

Vậy phương trình có hai nghiệm.

Lời giải

a) Thay x = 1 vào phương trình ta được \({3^{1 - 5}} = {\left( {\frac{1}{3}} \right)^{\sqrt {1 + 1} }}\) (vô lí).

Vậy x = 1 không là nghiệm của phương trình.

b) Thay x = 3 vào phương trình ta được \({3^{3 - 5}} = {\left( {\frac{1}{3}} \right)^{\sqrt {3 + 1} }}\)\( \Leftrightarrow \frac{1}{9} = \frac{1}{9}\) (luôn đúng).

Vậy x = 3 là nghiệm của phương trình.

c) Điều kiện: x + 1 ³ 0 Û x ³ −1.

d) \({3^{x - 5}} = {\left( {\frac{1}{3}} \right)^{\sqrt {x + 1} }}\)\( \Leftrightarrow {3^{x - 5}} = {3^{ - \sqrt {x + 1} }}\)\( \Leftrightarrow x - 5 =  - \sqrt {x + 1} \)\( \Leftrightarrow x + 1 + \sqrt {x + 1}  - 6 = 0\)

\( \Leftrightarrow \left( {\sqrt {x + 1}  - 2} \right)\left( {\sqrt {x + 1}  + 3} \right) = 0\)\( \Leftrightarrow \sqrt {x + 1}  = 2\)\( \Leftrightarrow x = 3\) (thỏa mãn).

Tổng bình phương các nghiệm là 9.

Đáp án: a) Sai;  b) Sai;   c) Đúng;    d) Sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP