Câu hỏi:

06/07/2025 26 Lưu

Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức s(t) = s0.2t, trong đó s0 là số lượng vi khuẩn A lúc ban đầu, s(t) là số lượng vi khuẩn A có sau t phút. Biết sau 3 phút thì số lượng vi khuẩn A là 624 nghìn con. Hỏi sau khoảng bao nhiêu giây, kể từ lúc ban đầu, số lượng vi khuẩn A là 30 triệu con?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau 3 phút thì số lượng vi khuẩn A là 624 nghìn con nên 624 = s0.23 Þ s0 = 78 nghìn con.

Số lượng vi khuẩn A là 30 triệu con cần thời gian là

30000 = 78.2t Þ \(t = {\log _2}\left( {\frac{{30000}}{{78}}} \right) \approx 8,59\) phút ≈ 515,24 giây.

Sau khoảng 516 giây thì số lượng vi khuẩn A là 30 triệu con.

Trả lời: 516.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

\({2^{{x^2} - 4x + 4}} = {4^{2{x^2} - 3x + 2}}\)\( \Leftrightarrow {2^{{x^2} - 4x + 4}} = {2^{4{x^2} - 6x + 4}}\)\( \Leftrightarrow {x^2} - 4x + 4 = 4{x^2} - 6x + 4\)\( \Leftrightarrow 3{x^2} - 2x = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{2}{3}\end{array} \right.\).

Vậy phương trình có hai nghiệm.

Câu 2

Lời giải

A

\({2^{{x^2} + 2x}} = {8^{1 - x}}\)\( \Leftrightarrow {2^{{x^2} + 2x}} = {2^{3 - 3x}}\)\( \Leftrightarrow {x^2} + 2x = 3 - 3x\)\( \Leftrightarrow {x^2} + 5x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 5 + \sqrt {37} }}{2}\\x = \frac{{ - 5 - \sqrt {37} }}{2}\end{array} \right.\).

Do đó tổng bình phương các nghiệm của phương trình là

\({\left( {\frac{{ - 5 + \sqrt {37} }}{2}} \right)^2} + {\left( {\frac{{ - 5 - \sqrt {37} }}{2}} \right)^2} = 31\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP