Câu hỏi:

06/07/2025 20

Một viên đạn được bắn lên cao theo phương trình s(t) = 196t – 4,9t2 trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?    

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

D

Ta có s'(t) = 196 – 9,8t.

Vận tốc của viên đạn v(t) = s'(t) = 196 – 9,8t Þ v(t) = 0 Û 196 – 9,8t = 0 Û t = 20.

Khi viên đạn cách mặt đất một khoảng h = s(20) = 196.20 – 4,9.202 = 1960 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

A

Ta có s'(t) = 3t2 – 6t + 9.

Vận tốc của chất điểm v(t) = s'(t) = 3t2 – 6t + 9 = 3(t – 1)2 + 6 ≥ 6.

Dấu “=” xảy ra khi và chỉ khi t = 1.

Lời giải

\({\rm{ Ta c\'o  }}\mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{2{x^3} - 16}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} 2\left( {{x^2} + 2x + 4} \right) = 24.\)

Vậy \({\rm{ }}f'\left( 2 \right) = 24.{\rm{ }}\)

Trả lời: 24.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP