Câu hỏi:

06/07/2025 32

Một chất điểm chuyển động có phương trình s(t) = t3 – 3t2 + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

Ta có s'(t) = 3t2 – 6t + 9.

Vận tốc của chất điểm v(t) = s'(t) = 3t2 – 6t + 9 = 3(t – 1)2 + 6 ≥ 6.

Dấu “=” xảy ra khi và chỉ khi t = 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

Ta tính được s'(t) = 2t.

Vận tốc của chất điểm v(t) = s'(t) = 2t Þ v(2) = 2.2 = 4 m/s.

Câu 2

Lời giải

A

Ta có f(1) = 12 + 2.1 = 3.

Khi đó theo định nghĩa \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP