Câu hỏi:

09/07/2025 38 Lưu

Tìm khai triển Taylor của hàm \[f\left( x \right) = \frac{1}{{\sqrt[3]{x}}}\] đến bậc 2 tại x0 = 1 với phần dư Peano.

A. \[f\left( x \right) = 1 - \frac{1}{3}\left( {x - 1} \right) - \frac{2}{9}{\left( {x - 1} \right)^2} + o\left( {{{\left( {x - 1} \right)}^2}} \right)\]

B. \[f\left( x \right) = 1 + \frac{1}{3}\left( {x - 1} \right) - \frac{2}{9}{\left( {x - 1} \right)^2} + o\left( {{{\left( {x - 1} \right)}^2}} \right)\]

C. \[f\left( x \right) = 1 - \frac{1}{3}\left( {x - 1} \right) + \frac{2}{9}{\left( {x - 1} \right)^2} + o\left( {{{\left( {x - 1} \right)}^2}} \right)\]

D. \[f\left( x \right) = 1 - \frac{1}{3}\left( {x - 1} \right) + \frac{4}{9}{\left( {x - 1} \right)^2} + o\left( {{{\left( {x - 1} \right)}^2}} \right)\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. \[\frac{1}{{2\pi }}\left( {0,16} \right){m^3}/s\]

B. \[\frac{1}{{2\pi }}\left( {0,16} \right)m/s\]

C. \[\frac{1}{{2\pi }}\left( {0,08} \right)m/s\]

D. \[\frac{1}{{2\pi }}\left( {0,08} \right){m^3}/s\]

Lời giải

Chọn đáp án B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{20}}{\pi }cm\]

B. \[\frac{{10}}{\pi }cm\]

C. \[\frac{{30}}{{{\pi ^2}}}cm\]

D. 20 cm

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{f^{\left( {2018} \right)}}\left( 2 \right) = - 2016!\]

B. \[{f^{\left( {2018} \right)}}\left( 2 \right) = - 2018!\]

C. \[{f^{\left( {2018} \right)}}\left( 2 \right) = - 2017!\]

D. \[{f^{\left( {2018} \right)}}\left( 2 \right) = - 2019!\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP