Câu hỏi:

17/07/2025 183 Lưu

Nhà ông An thuê thợ làm một cái gờ bằng bê tông để xe máy lên xuống bậc thêm có hình dạng giống như hình lăng trụ đứng tam giác dưới đây.

Nhà ông An thuê thợ làm một cái gờ bằng bê tông để xe máy lên xuống bậc thêm có hình dạng giống như hình lăng trụ đứng tam giác dưới đây.    Biết rằng   A B = 0 , 25 m ; B C = 0 , 6 m ; A C = 0 , 65 m ; A D = 0 , 9 m  . Cho biết, tiền quét vôi các mặt xung quanh (trừ hai mặt đáy) của gờ là   300 000   đồng và tiền đổ bê tông là   1 d m 3   giá   50 000   đồng.  a) Diện tích được quét vôi của cái gờ là   1 , 35   m2.  b) Thể tích của gờ lớn hơn   0 , 05 m 3 .    c) Số tiền mua bê tông làm chiếc gờ này nhỏ hơn   3 , 3   triệu đồng.  d) Tổng số tiền ông An phải trả là   3 , 5   triệu đồng. (ảnh 1)

Biết rằng \(AB = 0,25{\rm{ m; }}BC = 0,6{\rm{ m; }}AC{\rm{ = 0,65 m; }}AD = 0,9{\rm{ m}}\). Cho biết, tiền quét vôi các mặt xung quanh (trừ hai mặt đáy) của gờ là \(300{\rm{ 000}}\) đồng và tiền đổ bê tông là \(1{\rm{ d}}{{\rm{m}}^3}\) giá \(50{\rm{ 000}}\) đồng.

a) Diện tích được quét vôi của cái gờ là \(1,35\) m2.

b) Thể tích của gờ lớn hơn \(0,05{\rm{ }}{{\rm{m}}^3}.\)

c) Số tiền mua bê tông làm chiếc gờ này nhỏ hơn \(3,3\) triệu đồng.

d) Tổng số tiền ông An phải trả là \(3,5\) triệu đồng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đ  b) Đ    c) S   d) S

• Diện tích được quét vôi của cái gờ là: \(\left( {0,25 + 0,6 + 0,65} \right).0,9 = 1,35\) (m2).

Do đó, ý a) là đúng.

• Thể tích của cái gờ đó là: \(\frac{1}{2}.0,6.0,25.0,9 = 0,0675\) (m3)

Do đó, ý b) là đúng.

• Đổi \(0,0675{\rm{ }}{{\rm{m}}^3} = 67,5{\rm{ d}}{{\rm{m}}^3}\).

Do đó, số tiền để đổ bê tông cho cái gờ đó là: \(67,5.50{\rm{ }}000 = 3{\rm{ }}375{\rm{ }}000\) (đồng).

Do đó, ý c) là sai.

• Vậy tổng số tiền ông An phải trả là: \(3{\rm{ }}375{\rm{ }}000 + 300{\rm{ }}000 = 3{\rm{ }}675{\rm{ }}000\) (đồng).

Do đó, ý d) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \(35\)

Vì \(xy\parallel mn\) nên \(\widehat {xAB} = \widehat {ABn} = 70^\circ \) (so le trong).

Ta có tia \(BC\) là tia phân giác của \(\widehat {ABn}\) nên \(\widehat {ABC} = \widehat {CBn} = \widehat {\frac{{ABn}}{2}} = 35^\circ \).

Vì \(xy\parallel mn\) nên \(\widehat {ACB} = \widehat {CBn} = 35^\circ \).

Lời giải

Hướng dẫn giải

Ta có: \(S = \frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}\)

\(4S = 4\left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)

\(4S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}}\)

\(4S - S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)

\(3S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \frac{1}{4} - \frac{2}{{{4^2}}} - \frac{3}{{{4^3}}} - \frac{4}{{{4^4}}} - .... - \frac{{2023}}{{{4^{2023}}}}\)

\(3S = 1 + \left( {\frac{2}{4} - \frac{1}{4}} \right) + \left( {\frac{3}{{{4^2}}} - \frac{2}{{{4^2}}}} \right) + \left( {\frac{4}{{{4^3}}} - \frac{3}{{{4^3}}}} \right) + \left( {\frac{5}{{{4^4}}} - \frac{4}{{{4^4}}}} \right) + .... + \left( {\frac{{2023}}{{{4^{2022}}}} - \frac{{2022}}{{{4^{2022}}}}} \right) - \frac{{2023}}{{{4^{2023}}}}\)

\(3S = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}} - \frac{{2023}}{{{4^{2023}}}}\)

Nhận thấy \(3S < 1\).

Đặt \(A = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}\)

\(4A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}}\)

\(4A - A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}} - \left( {1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}} \right)\)

\(3A = 4 - \frac{1}{{{4^{2022}}}}\)

Nhận thấy \(4 - \frac{1}{{{4^{2022}}}} < 4\) hay \(3A < 4\) suy ra \(A < \frac{4}{3}\).

Do đó, \(3S < A\) nên \(S < \frac{A}{3}\) hay \(S < \frac{4}{9} < \frac{4}{8} = \frac{1}{2}.\)

Vậy \(S < \frac{1}{2}.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP