Câu hỏi:

17/07/2025 72 Lưu

Trong hình vẽ có \(xy\parallel mn\). Tia \(BC\) là tia phân giác của \(\widehat {ABn}.\) Biết \(\widehat {BAx} = 70^\circ \).

Trong hình vẽ có   x y ∥ m n  . Tia   B C   là tia phân giác của   ˆ A B n .   Biết   ˆ B A x = 70 ∘  .    Hỏi số đo   ˆ A C B   bằng bao nhiêu độ? (ảnh 1)

Hỏi số đo \(\widehat {ACB}\) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(35\)

Vì \(xy\parallel mn\) nên \(\widehat {xAB} = \widehat {ABn} = 70^\circ \) (so le trong).

Ta có tia \(BC\) là tia phân giác của \(\widehat {ABn}\) nên \(\widehat {ABC} = \widehat {CBn} = \widehat {\frac{{ABn}}{2}} = 35^\circ \).

Vì \(xy\parallel mn\) nên \(\widehat {ACB} = \widehat {CBn} = 35^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đ  b) Đ    c) S   d) S

• Diện tích được quét vôi của cái gờ là: \(\left( {0,25 + 0,6 + 0,65} \right).0,9 = 1,35\) (m2).

Do đó, ý a) là đúng.

• Thể tích của cái gờ đó là: \(\frac{1}{2}.0,6.0,25.0,9 = 0,0675\) (m3)

Do đó, ý b) là đúng.

• Đổi \(0,0675{\rm{ }}{{\rm{m}}^3} = 67,5{\rm{ d}}{{\rm{m}}^3}\).

Do đó, số tiền để đổ bê tông cho cái gờ đó là: \(67,5.50{\rm{ }}000 = 3{\rm{ }}375{\rm{ }}000\) (đồng).

Do đó, ý c) là sai.

• Vậy tổng số tiền ông An phải trả là: \(3{\rm{ }}375{\rm{ }}000 + 300{\rm{ }}000 = 3{\rm{ }}675{\rm{ }}000\) (đồng).

Do đó, ý d) là sai.

Lời giải

Hướng dẫn giải

Ta có: \(S = \frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}\)

\(4S = 4\left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)

\(4S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}}\)

\(4S - S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)

\(3S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \frac{1}{4} - \frac{2}{{{4^2}}} - \frac{3}{{{4^3}}} - \frac{4}{{{4^4}}} - .... - \frac{{2023}}{{{4^{2023}}}}\)

\(3S = 1 + \left( {\frac{2}{4} - \frac{1}{4}} \right) + \left( {\frac{3}{{{4^2}}} - \frac{2}{{{4^2}}}} \right) + \left( {\frac{4}{{{4^3}}} - \frac{3}{{{4^3}}}} \right) + \left( {\frac{5}{{{4^4}}} - \frac{4}{{{4^4}}}} \right) + .... + \left( {\frac{{2023}}{{{4^{2022}}}} - \frac{{2022}}{{{4^{2022}}}}} \right) - \frac{{2023}}{{{4^{2023}}}}\)

\(3S = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}} - \frac{{2023}}{{{4^{2023}}}}\)

Nhận thấy \(3S < 1\).

Đặt \(A = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}\)

\(4A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}}\)

\(4A - A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}} - \left( {1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}} \right)\)

\(3A = 4 - \frac{1}{{{4^{2022}}}}\)

Nhận thấy \(4 - \frac{1}{{{4^{2022}}}} < 4\) hay \(3A < 4\) suy ra \(A < \frac{4}{3}\).

Do đó, \(3S < A\) nên \(S < \frac{A}{3}\) hay \(S < \frac{4}{9} < \frac{4}{8} = \frac{1}{2}.\)

Vậy \(S < \frac{1}{2}.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP