Câu hỏi:

17/07/2025 140 Lưu

(1,5 điểm) Cho hình vẽ bên , biết: \(\widehat {FDC} = 135^\circ ;\widehat {{\rm{ }}CBx} = 45^\circ ;\widehat {{\rm{ }}DCz} = 135^\circ ,{\rm{ }}Dy\parallel Bx,{\rm{ }}Dy \bot BF\) tại điểm \(F.\)

(1,5 điểm) Cho hình vẽ bên , biết:   ˆ F D C = 135 ∘ ; ˆ C B x = 45 ∘ ; ˆ D C z = 135 ∘ , D y ∥ B x , D y ⊥ B F   tại điểm   F .      a) Chứng minh   C z ∥ D y .    b) Chứng minh   B C   là tia phân giác của   ˆ F B x .    c) Kẻ tia   C t   là tia đối của tia   C z  . Chứng minh   C t   là tia phân giác của   ˆ D C B  . (ảnh 1)

a) Chứng minh \(Cz\parallel Dy.\)

b) Chứng minh \(BC\) là tia phân giác của \(\widehat {FBx}.\)

c) Kẻ tia \(Ct\) là tia đối của tia \(Cz\). Chứng minh \(Ct\) là tia phân giác của \(\widehat {DCB}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Nhận thấy, \(\widehat {FDC} = \widehat {DCz} = 135^\circ \) (giả thiết)

Mà hai góc ở vị trí so le trong nên \(Cz\parallel Dy.\)

b) Vì \(Dy\parallel Bx\) và \({\rm{ }}Dy \bot BF\) nên \({\rm{ }}Bx \bot BF\) tại \(B.\)

Suy ra \(\widehat {FBx} = 90^\circ \).

Nhận thấy \(\widehat {FBC}\) và \(\widehat {CBx}\) là hai góc kề nhau nên \(\widehat {FBC} + \widehat {CBx} = \widehat {FBx}\) hay \(\widehat {FBC} + 45^\circ = 90^\circ \).

Suy ra \(\widehat {FBC} = 90^\circ - 45^\circ = 45^\circ \).

Do đó, \(\widehat {FBC} = \widehat {CBx}\) và tia \(BC\) nằm giữa hai tia \(BF,Bx\) nên \(BC\) là tia phân giác của \(\widehat {FBx}.\)

c)

(1,5 điểm) Cho hình vẽ bên , biết:   ˆ F D C = 135 ∘ ; ˆ C B x = 45 ∘ ; ˆ D C z = 135 ∘ , D y ∥ B x , D y ⊥ B F   tại điểm   F .      a) Chứng minh   C z ∥ D y .    b) Chứng minh   B C   là tia phân giác của   ˆ F B x .    c) Kẻ tia   C t   là tia đối của tia   C z  . Chứng minh   C t   là tia phân giác của   ˆ D C B  . (ảnh 2)

Có tia \(Ct\) là tia đối của tia \(Cz\) nên \(\widehat {tCz}\) là góc bẹt.

Có \(\widehat {tCD}\) và \(\widehat {DCz}\) là hai góc kề bù nên \(\widehat {tCD} + \widehat {DCz} = 180^\circ \) hay \(\widehat {tCD} + 135^\circ = 180^\circ \).

Suy ra \(\widehat {tCD} = 180^\circ - 135^\circ = 45^\circ \).

Vì \(Cz\parallel Dy\) và \(Dy\parallel Bx\) nên \(Cz\parallel Bx\). Do đó, \(Bx\parallel Ct\).

Suy ra \(\widehat {CBx} = \widehat {BCt} = 45^\circ \) (so le trong)

Do đó, \(\widehat {DCt} = \widehat {BCt} = 45^\circ \).

Mà \(Ct\) là tia nằm giữa hai tia \(CD\) và \(CB\).

Do đó, \(Ct\) là tia phân giác của \(\widehat {DCB}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đ  b) Đ    c) S   d) S

• Diện tích được quét vôi của cái gờ là: \(\left( {0,25 + 0,6 + 0,65} \right).0,9 = 1,35\) (m2).

Do đó, ý a) là đúng.

• Thể tích của cái gờ đó là: \(\frac{1}{2}.0,6.0,25.0,9 = 0,0675\) (m3)

Do đó, ý b) là đúng.

• Đổi \(0,0675{\rm{ }}{{\rm{m}}^3} = 67,5{\rm{ d}}{{\rm{m}}^3}\).

Do đó, số tiền để đổ bê tông cho cái gờ đó là: \(67,5.50{\rm{ }}000 = 3{\rm{ }}375{\rm{ }}000\) (đồng).

Do đó, ý c) là sai.

• Vậy tổng số tiền ông An phải trả là: \(3{\rm{ }}375{\rm{ }}000 + 300{\rm{ }}000 = 3{\rm{ }}675{\rm{ }}000\) (đồng).

Do đó, ý d) là sai.

Lời giải

Hướng dẫn giải

Ta có: \(S = \frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}\)

\(4S = 4\left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)

\(4S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}}\)

\(4S - S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)

\(3S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \frac{1}{4} - \frac{2}{{{4^2}}} - \frac{3}{{{4^3}}} - \frac{4}{{{4^4}}} - .... - \frac{{2023}}{{{4^{2023}}}}\)

\(3S = 1 + \left( {\frac{2}{4} - \frac{1}{4}} \right) + \left( {\frac{3}{{{4^2}}} - \frac{2}{{{4^2}}}} \right) + \left( {\frac{4}{{{4^3}}} - \frac{3}{{{4^3}}}} \right) + \left( {\frac{5}{{{4^4}}} - \frac{4}{{{4^4}}}} \right) + .... + \left( {\frac{{2023}}{{{4^{2022}}}} - \frac{{2022}}{{{4^{2022}}}}} \right) - \frac{{2023}}{{{4^{2023}}}}\)

\(3S = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}} - \frac{{2023}}{{{4^{2023}}}}\)

Nhận thấy \(3S < 1\).

Đặt \(A = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}\)

\(4A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}}\)

\(4A - A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}} - \left( {1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}} \right)\)

\(3A = 4 - \frac{1}{{{4^{2022}}}}\)

Nhận thấy \(4 - \frac{1}{{{4^{2022}}}} < 4\) hay \(3A < 4\) suy ra \(A < \frac{4}{3}\).

Do đó, \(3S < A\) nên \(S < \frac{A}{3}\) hay \(S < \frac{4}{9} < \frac{4}{8} = \frac{1}{2}.\)

Vậy \(S < \frac{1}{2}.\)

Câu 3

A. Đều có 6 măt.

B. Đều có 8 đỉnh.

C. Các mặt đáy song song với nhau.

D. Mỗi đỉnh có 3 góc vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP