B. TỰ LUẬN (3,0 điểm)
(1,0 điểm) Ba đội máy cày, cày ba cánh đồng có cùng diện tích. Đội thứ nhất cày trong 5 ngày, đội thứ hai cày trong 4 ngày và đội thứ ba cày trong 6 ngày. Hỏi mỗi đội có bao nhiêu máy cày, biết rằng ba đội có tất cả \(37\) máy? (Năng suất các máy là như nhau).
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi số máy cày của mỗi đội lần lượt là \(x;y;z{\rm{ }}\left( {x,y,z \in {\mathbb{N}^*}} \right)\).
Vì số máy cày tỉ lệ nghịch với số ngày nên ta có: \(5x = 4y = 6z\) hay \(\frac{x}{{\frac{1}{5}}} = \frac{y}{{\frac{1}{4}}} = \frac{z}{{\frac{1}{6}}}\) (1).
Vì cả ba đội có tất cả \(37\) máy nên \(x + y + z = 37\) (2)
Từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{\frac{1}{5}}} = \frac{y}{{\frac{1}{4}}} = \frac{z}{{\frac{1}{6}}} = \frac{{x + y + z}}{{\frac{1}{5} + \frac{1}{4} + \frac{1}{6}}} = \frac{{37}}{{\frac{{37}}{{60}}}} = 60\).
Do đó, \(\frac{x}{{\frac{1}{5}}} = 60\) nên \(x = \frac{1}{5}.60 = 12\) (thỏa mãn).
\(\frac{y}{{\frac{1}{4}}} = 60\) nên \(y = 60.\frac{1}{4} = 15\) (thỏa mãn).
\(\frac{z}{{\frac{1}{6}}} = 60\) nên \(z = 60.\frac{1}{6} = 10\) (thỏa mãn).
Vậy số máy cày của các đội thứ nhất, thứ hai, thứ ba lần lượt là \(12\) máy, \(15\) máy và \(10\) máy.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: \(35\)
Vì \(xy\parallel mn\) nên \(\widehat {xAB} = \widehat {ABn} = 70^\circ \) (so le trong).
Ta có tia \(BC\) là tia phân giác của \(\widehat {ABn}\) nên \(\widehat {ABC} = \widehat {CBn} = \widehat {\frac{{ABn}}{2}} = 35^\circ \).
Vì \(xy\parallel mn\) nên \(\widehat {ACB} = \widehat {CBn} = 35^\circ \).
Lời giải
Hướng dẫn giải
Ta có: \(S = \frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}\)
\(4S = 4\left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)
\(4S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}}\)
\(4S - S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)
\(3S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \frac{1}{4} - \frac{2}{{{4^2}}} - \frac{3}{{{4^3}}} - \frac{4}{{{4^4}}} - .... - \frac{{2023}}{{{4^{2023}}}}\)
\(3S = 1 + \left( {\frac{2}{4} - \frac{1}{4}} \right) + \left( {\frac{3}{{{4^2}}} - \frac{2}{{{4^2}}}} \right) + \left( {\frac{4}{{{4^3}}} - \frac{3}{{{4^3}}}} \right) + \left( {\frac{5}{{{4^4}}} - \frac{4}{{{4^4}}}} \right) + .... + \left( {\frac{{2023}}{{{4^{2022}}}} - \frac{{2022}}{{{4^{2022}}}}} \right) - \frac{{2023}}{{{4^{2023}}}}\)
\(3S = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}} - \frac{{2023}}{{{4^{2023}}}}\)
Nhận thấy \(3S < 1\).
Đặt \(A = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}\)
\(4A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}}\)
\(4A - A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}} - \left( {1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}} \right)\)
\(3A = 4 - \frac{1}{{{4^{2022}}}}\)
Nhận thấy \(4 - \frac{1}{{{4^{2022}}}} < 4\) hay \(3A < 4\) suy ra \(A < \frac{4}{3}\).
Do đó, \(3S < A\) nên \(S < \frac{A}{3}\) hay \(S < \frac{4}{9} < \frac{4}{8} = \frac{1}{2}.\)
Vậy \(S < \frac{1}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.