Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn
Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn
Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Tìm giá trị của \(x\) biết: \(\frac{1}{{16}} - \left( {\frac{2}{5} - x} \right) = {\left( {\frac{3}{4}} \right)^2}\) (Kết quả ghi dưới dạng số thập phân).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: \(0,9\)
Ta có: \(\frac{1}{{16}} - \left( {\frac{2}{5} - x} \right) = {\left( {\frac{3}{4}} \right)^2}\)
\(\frac{1}{{16}} - \left( {\frac{2}{5} - x} \right) = \frac{9}{{16}}\)
\(\frac{2}{5} - x = \frac{1}{{16}} - \frac{9}{{16}}\)
\(\frac{2}{5} - x = - \frac{8}{{16}}\)
\(x = \frac{2}{5} - \left( { - \frac{8}{{16}}} \right)\)
\(x = \frac{2}{5} + \frac{8}{{16}}\)
\(x = \frac{2}{5} + \frac{1}{2}\)
\(x = \frac{9}{{10}}\)
\(x = 0,9\)
Vậy \(x = 0,9\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Nhận thấy \(\left| {x + \frac{1}{{101}}} \right| \ge 0;\) \(\left| {x + \frac{2}{{101}}} \right| \ge 0;\) \(\left| {x + \frac{3}{{101}}} \right| \ge 0\)…..;\(\left| {x + \frac{{100}}{{101}}} \right| \ge 0\)
Do đó, \(\left| {x + \frac{1}{{101}}} \right| + \left| {x + \frac{2}{{101}}} \right| + \left| {x + \frac{3}{{101}}} \right| + ... + \left| {x + \frac{{100}}{{101}}} \right| \ge 0\).
Mà \(\left| {x + \frac{1}{{101}}} \right| + \left| {x + \frac{2}{{101}}} \right| + \left| {x + \frac{3}{{101}}} \right| + ... + \left| {x + \frac{{100}}{{101}}} \right| = 101x\) nên \(101x \ge 0\) hay \(x \ge 0\).
Với \(x \ge 0\), suy ra \(x + \frac{1}{{101}} + x + \frac{2}{{101}} + x + \frac{3}{{101}} + ... + x + \frac{{100}}{{101}} = 101x\)
\(100x + \left( {\frac{1}{{101}} + \frac{2}{{101}} + \frac{3}{{101}} + ... + \frac{{100}}{{101}}} \right) = 101x\)
\(101x - 100x = \frac{{1 + 2 + 3 + ... + 100}}{{101}}\)
\(x = \frac{{100.101}}{{2.101}}\)
\(x = 50\) (thỏa mãn)
Vậy \(x = 50\).
Lời giải
Hướng dẫn giải
a) Xét \(\Delta ABD\) và \(\Delta EBD\), có:
\(AB = EB\) (gt)
\(\widehat {ABD} = \widehat {DBE}\) (\(BD\) là phân giác của \(\widehat {ABC}\))
\(BD\) chung
Do đó, \(\Delta ABD = \Delta EBD\) (c.g.c)
b) Xét \(\Delta ABI\) và \(\Delta EBI,\) có:
\(AB = BE\) (gt)
\(\widehat {ABI} = \widehat {IBE}\) (\(BD\) là phân giác của \(\widehat {ABC}\))
\(BI\) chung
Do đó, \(\Delta ABI = \Delta EBI\) (c.g.c)
Suy ra \(AI = IE\) (hai cạnh tương ứng)
Mà \(I\) là giao điểm của \(BD\) và \(AE.\)
Do đó, \(I\) là trung điểm của \(AE.\)
c) Vì \(\Delta ABD = \Delta EBD\) (cmt) suy ra \(AD = DE\) (hai cạnh tương ứng)
và \(\widehat {DAB} = \widehat {DEB} = 90^\circ \) (hai góc tương ứng).
Nhận thấy, \(\Delta ADK\) vuông tại \(A\) và \(\Delta EDC\) vuông tại \(E\) có:
\(AD = DE\) (cmt)
\(\widehat {ADK} = \widehat {EDC}\) (đối đỉnh)
Suy ra \(\Delta ADK = \Delta EDC\) (cgv – gn)
Do đó, \(CE = AK\) (hai cạnh tương ứng)
Ta có: \(KB = KA + AB\); \(CB = CE + EB\)
Mà \(AB = BE\) (gt); \(AK = CE\) (cmt)
Do đó, \(KB = CB\).
Xét \(\Delta KMB\) và \(\Delta CMB\) có:
\(KB = CB\) (cmt)
\(KM = CM\) (gt)
\(MB\) chung
Do đó, \(\Delta KMB = \Delta CMB\) (c.c.c)
Suy ra \(\widehat {CBM} = \widehat {KBM}\) (hai góc tương ứng)
Mà tia \(BM\) nằm giữa hai tia \(BK,BC\) nên \(BM\) là tia phân giác của \(\widehat {KBC}\).
Mặt khác, \(BD\) cũng là tia phân giác của \(\widehat {ABC}\).
Do đó, ba điểm \(B,D,M\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.