Câu hỏi:

17/07/2025 9 Lưu

Kết quả điểm kiểm tra cuối học kì môn Toán của một trường THCS được biểu thị trong biểu đồ hình quạt tròn dưới đây.

Kết quả điểm kiểm tra cuối học kì môn Toán của một trường THCS được biểu thị trong biểu đồ hình quạt tròn dưới đây.Biết trường có \(180\) học sinh khá. Hỏi số học sinh trung bình của trường đ (ảnh 1)

Biết trường có \(180\) học sinh khá. Hỏi số học sinh trung bình của trường đó bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(80\)

Từ biểu đồ, nhận thấy số học sinh khá chiếm \(45\% \).

Do đó, tổng số học sinh của trường THCS là: \(180:45.100 = 400\) (học sinh).

Số học sinh trung bình chiếm tỉ lệ so với số học sinh toàn trường là: \(100\% - 35\% - 45\% = 20\% \).

Do đó, số học sinh trung bình của trường đó là: \(400.20\% = 80\) (học sinh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \({\left( { - \frac{1}{2}} \right)^2}.\frac{4}{{11}} + \frac{7}{{11}}.{\left( { - \frac{1}{2}} \right)^2}\)

\( = {\left( { - \frac{1}{2}} \right)^2}.\left( {\frac{4}{{11}} + \frac{7}{{11}}} \right)\)

\( = \frac{1}{4}.\frac{{11}}{{11}}\)

\( = \frac{1}{4}.1\)

\( = \frac{1}{4}\).

b) \({\left( { - 2} \right)^3} + 1\frac{1}{3}\left| {2,5} \right| - \sqrt {49} :\frac{7}{5}\)

\( = {\left( { - 2} \right)^3} + \frac{4}{3}.2,5 - \sqrt {{7^2}} :\frac{7}{5}\)

\( = 8 + \frac{4}{3}.\frac{5}{2} - 7.\frac{5}{7}\)

\( = 8 + \frac{{10}}{3} - 5\)

\( = 3 + \frac{{10}}{3}\)

\( = \frac{{19}}{3}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Đd) S

Nhận thấy,

• \(\widehat {ABy'}\) và \(\widehat {y'BC}\) là hai góc kề nhau. Do đó, ý a) đúng.

• Vì \(Ax\parallel yy'\) nên \(\widehat {xAB} = \widehat {BAy'} = 40^\circ \) (so le trong). Do đó, ý b) đúng.

• Lại có \(\widehat {ABy'} + \widehat {y'BC} = \widehat {ABC}\) suy ra \(\widehat {y'BC} = \widehat {ABC} - \widehat {ABy'} = 105^\circ - 40^\circ = 65^\circ \).

Suy ra \(\widehat {CBy'} = \widehat {BCz} = 65^\circ \).

Mà hai góc ở vị trí so le trong nên \(yy'\parallel Cx.\) Do đó, ý c) đúng.

• Có \(\widehat {CBy'}\) và \(\widehat {CBy}\) là hai góc kề bù nên \(\widehat {CBy'} + \widehat {CBy} = 180^\circ \), suy ra \(\widehat {CBy} = 180^\circ - \widehat {CBy'} = 115^\circ \).

Lại có \(BD\) là tia phân giác của \(\widehat {CBy}\) nên \(\widehat {CBD} = \widehat {DBy} = \widehat {\frac{{CBy}}{2}} = \frac{{115^\circ }}{2} = 57,5^\circ \).

Vì \(yy'\parallel Cx\) nên \(\widehat {CBy} = \widehat {CDB} = 57,5^\circ \) (so le trong)

Do đó, \(\widehat {CDB} < 60^\circ \).

Vậy ý d) là sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP