Câu hỏi:

17/07/2025 9 Lưu

(1,5 điểm) Cho \(\Delta MNP\) vuông tại \(M\) có \(MN < MP.\) Trên cạnh \(NP\) lấy điểm \(E\) sao cho \(NM = NE.\) Gọi \(K\) là trung điểm của \(ME.\)

a) Chứng minh \(\Delta MNK = \Delta ENK.\)

b) \(NK\) cắt \(MP\) tại \(I.\) Chứng minh \(IE \bot NP.\)

c) Qua \(E\) vẽ đường thẳng song song với \(MP\) cắt \(NI\) tại \(F.\) Trên đoạn \(IP\) lấy điểm \(Q\) sao cho \(IQ = FE.\) Chứng minh \(\widehat {MNI} = \widehat {QEP}.\)

(1,5 điểm) Cho   Δ M N P   vuông tại   M   có   M N < M P .   Trên cạnh   N P   lấy điểm   E   sao cho   N M = N E .   Gọi   K   là trung điểm của   M E .    a) Chứng minh   Δ M N K = Δ E N K .    b)   N K   cắt   M P   tại   I .   Chứng minh   I E ⊥ N P .    c) Qua   E   vẽ đường thẳng song song với   M P   cắt   N I   tại   F .   Trên đoạn   I P   lấy điểm   Q   sao cho   I Q = F E .   Chứng minh   ˆ M N I = ˆ Q E P .   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Xét \(\Delta MNK\) và \(\Delta ENK\), có:

\(MN = EN\) (gt)

\(MK = KE\) (gt)

\(KN\) chung (gt)

Do đó, \(\Delta MNK = \Delta ENK\) (c.c.c)

b) Vì \(\Delta MNK = \Delta ENK\) (cmt) nên \(\widehat {MNK} = \widehat {KNE}\) (hai góc tương ứng)

Xét \(\Delta MNI\) và \(\Delta ENI\), có:

\(MN = NE\) (gt)

\(\widehat {MNI} = \widehat {INE}\) (cmt)

\(NI\) chung (gt)

Do đó, \(\Delta MNI = \Delta ENI\) (c.g.c)

Suy ra \(\widehat {IMN} = \widehat {IEN} = 90^\circ \) (hai góc tương ứng)

Do đó, \(IE \bot PN\) tại \(E\).

c) Theo đề, ta có \(EF\parallel MP\) nên \(EF\parallel QI\).

Mà \(IQ = FE\) nên \(QEFI\) là hình bình hành.

Suy ra \(QE\parallel IF\) hay \(QE\parallel IN\).

Ta có: \(\widehat {QEP} = \widehat {INE}\) (hai góc đồng vị)

Mà \(\widehat {INE} = \widehat {INM}\) (hai góc tương ứng)

Suy ra \(\widehat {MNI} = \widehat {QEP}\) (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \({\left( { - \frac{1}{2}} \right)^2}.\frac{4}{{11}} + \frac{7}{{11}}.{\left( { - \frac{1}{2}} \right)^2}\)

\( = {\left( { - \frac{1}{2}} \right)^2}.\left( {\frac{4}{{11}} + \frac{7}{{11}}} \right)\)

\( = \frac{1}{4}.\frac{{11}}{{11}}\)

\( = \frac{1}{4}.1\)

\( = \frac{1}{4}\).

b) \({\left( { - 2} \right)^3} + 1\frac{1}{3}\left| {2,5} \right| - \sqrt {49} :\frac{7}{5}\)

\( = {\left( { - 2} \right)^3} + \frac{4}{3}.2,5 - \sqrt {{7^2}} :\frac{7}{5}\)

\( = 8 + \frac{4}{3}.\frac{5}{2} - 7.\frac{5}{7}\)

\( = 8 + \frac{{10}}{3} - 5\)

\( = 3 + \frac{{10}}{3}\)

\( = \frac{{19}}{3}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Đd) S

Nhận thấy,

• \(\widehat {ABy'}\) và \(\widehat {y'BC}\) là hai góc kề nhau. Do đó, ý a) đúng.

• Vì \(Ax\parallel yy'\) nên \(\widehat {xAB} = \widehat {BAy'} = 40^\circ \) (so le trong). Do đó, ý b) đúng.

• Lại có \(\widehat {ABy'} + \widehat {y'BC} = \widehat {ABC}\) suy ra \(\widehat {y'BC} = \widehat {ABC} - \widehat {ABy'} = 105^\circ - 40^\circ = 65^\circ \).

Suy ra \(\widehat {CBy'} = \widehat {BCz} = 65^\circ \).

Mà hai góc ở vị trí so le trong nên \(yy'\parallel Cx.\) Do đó, ý c) đúng.

• Có \(\widehat {CBy'}\) và \(\widehat {CBy}\) là hai góc kề bù nên \(\widehat {CBy'} + \widehat {CBy} = 180^\circ \), suy ra \(\widehat {CBy} = 180^\circ - \widehat {CBy'} = 115^\circ \).

Lại có \(BD\) là tia phân giác của \(\widehat {CBy}\) nên \(\widehat {CBD} = \widehat {DBy} = \widehat {\frac{{CBy}}{2}} = \frac{{115^\circ }}{2} = 57,5^\circ \).

Vì \(yy'\parallel Cx\) nên \(\widehat {CBy} = \widehat {CDB} = 57,5^\circ \) (so le trong)

Do đó, \(\widehat {CDB} < 60^\circ \).

Vậy ý d) là sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP